Summary:
This is the first step towards complete removal of AST caching from
LICM. Attempts to keep LICM's AST cache up to date across passes can lead
to miscompiles like this one: https://bugs.llvm.org/show_bug.cgi?id=44320.
LICM has already switched to using MemorySSA to do sinking and hoisting
and only builds an AliasSetTracker on demand for the promoteToScalars
step, without caching it from one LICM instance to the next. Given this,
we don't have compile-time reasons to keep AST caching any more.
The only scenario where the caching would be used currently is when
using the LegacyPassManager and setting -enable-mssa-loop-dependency=false.
This switch should help us to surface any possible issues that may arise
along this way, also it turns subsequent removal of AST caching into NFC.
Reviewers: asbirlea, fhahn, efriedma, reames
Reviewed By: asbirlea
Subscribers: hiraditya, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73081
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, nicolasvasilache
Subscribers: hiraditya, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73041
This moves `rewriteLoopExitValues()` from IndVarSimplify to LoopUtils thus
making it a generic loop utility function. This allows to rewrite loop exit
values by just calling this function without running the whole IndVarSimplify
pass.
We use this in D72714 to rematerialise the iteration count in exit blocks, so
that we can clean-up loop update expressions inside the hardware-loops later.
Differential Revision: https://reviews.llvm.org/D72602
During the SeparateConstOffsetFromGEP pass, signed extensions are distributed
to the values that feed into them and then later recombined. The recombination
stage is somewhat problematic- it doesn't differ add and sub instructions
from another when matching the sext(a) +/- sext(b) -> sext(a +/- b) pattern
in some instances.
An example- the IR contains:
%unextendedA
%unextendedB
%subuAuB = unextendedA - unextendedB
%extA = extend A
%extB = extend B
%addeAeB = extA + extB
The problematic optimization will transform that into:
%unextendedA
%unextendedB
%subuAuB = unextendedA - unextendedB
%extA = extend A
%extB = extend B
%addeAeB = extend subuAuB ; Obviously not semantically equivalent to the IR input.
This patch fixes that.
Patch by Drew Wock <drew.wock@sas.com>
Differential Revision: https://reviews.llvm.org/D65967
This reverts commit 3f3017e because there's a failure on peel-loop-nests.ll
with LLVM_ENABLE_EXPENSIVE_CHECKS on.
Differential Revision: https://reviews.llvm.org/D70304
There are a few global (cl::opt) controls that enable optional
behavior in GVN. Introduce GVNOptions that provide corresponding
per-pass instance controls.
That will allow to use GVN multiple times in pipeline each time
with different settings.
Reviewers: asbirlea, rnk, reames, skatkov, fhahn
Reviewed By: fhahn
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72732
Summary:
The old pass manager separated speed optimization and size optimization
levels into two unsigned values. Coallescing both in an enum in the new
pass manager may lead to unintentional casts and comparisons.
In particular, taking a look at how the loop unroll passes were constructed
previously, the Os/Oz are now (==new pass manager) treated just like O3,
likely unintentionally.
This change disallows raw comparisons between optimization levels, to
avoid such unintended effects. As an effect, the O{s|z} behavior changes
for loop unrolling and loop unroll and jam, matching O2 rather than O3.
The change also parameterizes the threshold values used for loop
unrolling, primarily to aid testing.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: zzheng, ychen, mehdi_amini, hiraditya, steven_wu, dexonsmith, dang, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72547
It appears to be rather useful when analyzing Loops with multiple
deoptimizing exits, perhaps merged ones.
For now it is used in LoopPredication, will be adding more uses
in other loop passes.
Reviewers: asbirlea, fhahn, skatkov, spatel, reames
Reviewed By: reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72754
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
Summary: Duplicate code in widenWithVariantLoadUseCodegen is removed and also use assert to check unknown extension type as it should be filtered out by the pre condition check before calling this function.
Reviewers: az, sanjoy, sebpop, efriedma, javed.absar, sanjoy.google
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits, amehsan
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72652
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
pass.
Summary: This patch changes LoopUnrollAndJamPass to a function pass, and
keeps the loops traversal order same as defined in
FunctionToLoopPassAdaptor LoopPassManager.h.
The next patch will change the loop traversal to outer to inner order,
so more loops can be transform.
Discussion in llvm-dev mailing list:
https://groups.google.com/forum/#!topic/llvm-dev/LF4rUjkVI2g
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto
Reviewed By: dmgreen
Subscribers: hiraditya, zzheng, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D72230
This patch updates the shape propagation to iterate until no new shape
information is discovered.
As initial seed for the forward propagation, we use the matrix intrinsic
instructions. Both propagateShapeForward and propagateShapeBackward
return new work lists, with the instructions to be used for the next
iteration. When propagating forward, we record all instructions we added
new shape information for. When propagating backward, we record all
users of instructions we added new shape information for.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70901
This patch extends to shape propagation to also include load
instructions and implements shape aware lowering for vector loads.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70900
This patch extends the shape propagation for matrix operations to also
propagate the shape of instructions to their operands.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70899
Factor out common logic into some reasonable commented helper functions. In the process, ensure that the in-block vs cross-block cases are handled the same. They previously weren't.
Differential Revision: https://reviews.llvm.org/D67126
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
The patch makes sure that the LastThrowing pointer does not point to any instruction deleted by call to DeleteDeadInstruction.
While iterating through the instructions the pass maintains a pointer to the lastThrowing Instruction. A call to deleteDeadInstruction deletes a dead store and other instructions feeding the original dead instruction which also become dead. The instruction pointed by the lastThrowing pointer could also be deleted by the call to DeleteDeadInstruction and thus it becomes a dangling pointer. Because of this, we see an error in the next iteration.
In the patch, we maintain a list of throwing instructions encountered previously and use the last non deleted throwing instruction from the container.
Reviewers: fhahn, bcahoon, efriedma
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D65326
This patch extends the current shape propagation and shape aware
lowering to also support binary operators. Those operators are uniform
with respect to their shape (shape of the input operands is the same as
the shape of their result).
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70898
If the matrix.multiply calls have the contract fast math flag, we can
use fmuladd. This als adds a command line option to force fmuladd
generation. We can retire this option once there is a clang-level
option.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70951
This patch adds infrastructure for forward shape propagation to
LowerMatrixIntrinsics. It also updates the pass to make use of
the shape information to break up larger vector operations and to
eliminate unnecessary conversion operations between columnwise matrixes
and flattened vectors: if shape information is available for an
instruction, lower the operation to a set of instructions operating on
columns. For example, a store of a matrix is broken down into separate
stores for each column. For users that do not have shape
information (e.g. because they do not yet support shape information
aware lowering), we pack the result columns into a flat vector and
update those users.
It also adds shape aware lowering for the first non-intrinsic
instruction: vector stores.
Example:
For
%c = call <4 x double> @llvm.matrix.transpose(<4 x double> %a, i32 2, i32 2)
store <4 x double> %c, <4 x double>* %Ptr
We generate the code below without shape propagation. Note %9 which
combines the columns of the transposed matrix into a flat vector.
%split = shufflevector <4 x double> %a, <4 x double> undef, <2 x i32> <i32 0, i32 1>
%split1 = shufflevector <4 x double> %a, <4 x double> undef, <2 x i32> <i32 2, i32 3>
%1 = extractelement <2 x double> %split, i64 0
%2 = insertelement <2 x double> undef, double %1, i64 0
%3 = extractelement <2 x double> %split1, i64 0
%4 = insertelement <2 x double> %2, double %3, i64 1
%5 = extractelement <2 x double> %split, i64 1
%6 = insertelement <2 x double> undef, double %5, i64 0
%7 = extractelement <2 x double> %split1, i64 1
%8 = insertelement <2 x double> %6, double %7, i64 1
%9 = shufflevector <2 x double> %4, <2 x double> %8, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
store <4 x double> %9, <4 x double>* %Ptr
With this patch, we propagate the 2x2 shape information from the
transpose to the store and we generate the code below. Note that we
store the columns directly and do not need an extra shuffle.
%9 = bitcast <4 x double>* %Ptr to double*
%10 = bitcast double* %9 to <2 x double>*
store <2 x double> %4, <2 x double>* %10, align 8
%11 = getelementptr double, double* %9, i32 2
%12 = bitcast double* %11 to <2 x double>*
store <2 x double> %8, <2 x double>* %12, align 8
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70897
Summary:
Ignore looking at blocks that are unreachable from entry when
collecting candidates for hosting.
Normally the consthoist pass is executed in the llc pipeline,
just after unreachableblockelim. So it is abnormal to have code
that is unreachable from the entry block. But when running the
pass as part of opt, for example as part of fuzzy testing, we
might trigger various kinds of asserts when collecting candidates
if we include unreachable blocks in that analysis.
It seems like a waste of time to hoist constants in unreachble
blocks, so the solution is to simply ignore such blocks when
collecting the hoisting candidates.
The two added test cases used to end up in two different asserts,
and the intention with the checks is just to verify that we no
longer fail.
Fixes: PR43903
Reviewers: spatel
Reviewed By: spatel
Subscribers: hiraditya, uabelho, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71678
Loop fusion previously had a method to check whether a loop was in rotated form. This method has
been moved into the LoopInfo class. This patch removes the old isRotated method from loop fusion,
in favour of the new one in LoopInfo.
Summary:This PR move instructions from FC0.Latch bottom up to the
beginning of FC1.Latch as long as they are proven safe.
To illustrate why this is beneficial, let's consider the following
example:
Before Fusion:
header1:
br header2
header2:
br header2, latch1
latch1:
br header1, preheader3
preheader3:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header3, exit3
After Fusion (before this PR):
header1:
br header2
header2:
br header2, latch1
latch1:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header1, exit3
Note that preheader3 is removed during fusion before this PR.
Notice that we cannot fuse loop2 with loop4 as there exists block latch1
in between.
This PR move instructions from latch1 to beginning of latch3, and remove
block latch1. LoopFusion is now able to fuse loop nest recursively.
After Fusion (after this PR):
header1:
br header2
header2:
br header3
header3:
br header4
header4:
br header2, latch3
latch3:
br header1, exit3
Reviewer: kbarton, jdoerfert, Meinersbur, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: kbarton, Meinersbur
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71165
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch restricts loop fusion to only consider rotated loops as valid candidates.
This simplifies the analysis and transformation and aligns with other loop optimizations.
Reviewers: jdoerfert, Meinersbur, dmgreen, etiotto, Whitney, fhahn, hfinkel
Reviewed By: Meinersbur
Subscribers: ormris, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71025
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
Summary:
Add a RemoveRedundantDbgInstrs to BasicBlockUtils with the
goal to remove redundant dbg intrinsics from a basic block.
This can be useful after various transforms, as it might
be simpler to do a filtering of dbg intrinsics after the
transform than during the transform.
One primary use case would be to replace a too aggressive
removal done by MergeBlockIntoPredecessor, seen at loop
rotate (not done in this patch).
The elimination algorithm currently focuses on dbg.value
intrinsics and is doing two iterations over the BB.
First we iterate backward starting at the last instruction
in the BB. Whenever a consecutive sequence of dbg.value
instructions are found we keep the last dbg.value for
each variable found (variable fragments are identified
using the {DILocalVariable, FragmentInfo, inlinedAt}
triple as given by the DebugVariable helper class).
Next we iterate forward starting at the first instruction
in the BB. Whenever we find a dbg.value describing a
DebugVariable (identified by {DILocalVariable, inlinedAt})
we save the {DIValue, DIExpression} that describes that
variables value. But if the variable already was mapped
to the same {DIValue, DIExpression} pair we instead drop
the second dbg.value.
To ease the process of making lit tests for this utility a
new pass is introduced called RedundantDbgInstElimination.
It can be executed by opt using -redundant-dbg-inst-elim.
Reviewers: aprantl, jmorse, vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71478
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This is the first patch adding an initial set of matrix intrinsics and a
corresponding lowering pass. This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2019-October/136240.html
The first patch introduces four new intrinsics (transpose, multiply,
columnwise load and store) and a LowerMatrixIntrinsics pass, that
lowers those intrinsics to vector operations.
Matrixes are embedded in a 'flat' vector (e.g. a 4 x 4 float matrix
embedded in a <16 x float> vector) and the intrinsics take the dimension
information as parameters. Those parameters need to be ConstantInt.
For the memory layout, we initially assume column-major, but in the RFC
we also described how to extend the intrinsics to support row-major as
well.
For the initial lowering, we split the input of the intrinsics into a
set of column vectors, transform those column vectors and concatenate
the result columns to a flat result vector.
This allows us to lower the intrinsics without any shape propagation, as
mentioned in the RFC. In follow-up patches, we plan to submit the
following improvements:
* Shape propagation to eliminate the embedding/splitting for each
intrinsic.
* Fused & tiled lowering of multiply and other operations.
* Optimization remarks highlighting matrix expressions and costs.
* Generate loops for operations on large matrixes.
* More general block processing for operation on large vectors,
exploiting shape information.
We would like to add dedicated transpose, columnwise load and store
intrinsics, even though they are not strictly necessary. For example, we
could instead emit a large shufflevector instruction instead of the
transpose. But we expect that to
(1) become unwieldy for larger matrixes (even for 16x16 matrixes,
the resulting shufflevector masks would be huge),
(2) risk instcombine making small changes, causing us to fail to
detect the transpose, preventing better lowerings
For the load/store, we are additionally planning on exploiting the
intrinsics for better alias analysis.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor, efriedma, rengolin
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70456
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
Soon Intrinsic::ID will be a plain integer, so this overload will not be
possible.
Rename both overloads to ensure that downstream targets observe this as
a build failure instead of a runtime failure.
Split off from D71320
Reviewers: efriedma
Differential Revision: https://reviews.llvm.org/D71381
In general ValueHandleBase::ValueIsRAUWd shouldn't be called when not
all uses of the value were actually replaced, though, currently
formLCSSAForInstructions calls it when it inserts LCSSA-phis.
Calls of ValueHandleBase::ValueIsRAUWd were added to LCSSA specifically
to update/invalidate SCEV. In the best case these calls duplicate some
of the work already done by SE->forgetValue, though in case when SCEV of
the value is SCEVUnknown, SCEV replaces the underlying value of
SCEVUnknown with the new value (i.e. acts like LCSSA-phi actually fully
replaces the value it is created for), which leads to SCEV being
corrupted because LCSSA-phi rarely dominates all uses of its inputs.
Fixes bug https://bugs.llvm.org/show_bug.cgi?id=44058.
Reviewers: fhahn, efriedma, reames, sanjoy.google
Reviewed By: fhahn
Subscribers: hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70593
The patch makes sure that the LastThrowing pointer does not point to any instruction deleted by call to DeleteDeadInstruction.
While iterating through the instructions the pass maintains a pointer to the lastThrowing Instruction. A call to deleteDeadInstruction deletes a dead store and other instructions feeding the original dead instruction which also become dead. The instruction pointed by the lastThrowing pointer could also be deleted by the call to DeleteDeadInstruction and thus it becomes a dangling pointer. Because of this, we see an error in the next iteration.
In the patch, we maintain a list of throwing instructions encountered previously and use the last non deleted throwing instruction from the container.
Patch by Ankit <quic_aankit@quicinc.com>
Reviewers: fhahn, bcahoon, efriedma
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D65326
The PHI node checks for inner loop exits are too permissive currently.
As indicated by an existing comment, we should only allow LCSSA PHI
nodes that are part of reductions or are only used outside of the loop
nest. We ensure this by checking the users of the LCSSA PHIs.
Specifically, it is not safe to use an exiting value from the inner loop in the latch of the outer
loop.
It also moves the inner loop exit check before the outer loop exit
check.
Fixes PR43473.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D68144
SCEV caches the exiting blocks when computing exit counts. In
SimpleLoopUnswitch, we split the exit block of the loop to unswitch.
Currently we only invalidate the loop containing that exit block, but if
that block is the exiting block for a parent loop, we have stale cache
entries. We have to invalidate the top-most loop that contains the exit
block as exiting block. We might also be able to skip invalidating the
loop containing the exit block, if the exit block is not an exiting
block of that loop.
There are also 2 more places in SimpleLoopUnswitch, that use a similar
problematic approach to get the loop to invalidate. If the patch makes
sense, I will also update those places to a similar approach (they deal
with multiple exit blocks, so we cannot directly re-use
getTopMostExitingLoop).
Fixes PR43972.
Reviewers: skatkov, reames, asbirlea, chandlerc
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D70786
Summary:
In case of a need to distinguish different query sites for gradual commit or
debugging of PGSO. NFC.
Reviewers: davidxl
Subscribers: hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70510
Currently the assertion in updateSuccessor is overly strict in some
cases and overly relaxed in other cases. For branches to the inner and
outer loop preheader it is too strict, because they can either be
unconditional branches or conditional branches with duplicate targets.
Both cases are fine and we can allow updating multiple successors.
On the other hand, we have to at least update one successor. This patch
adds such an assertion.
Summary:
With this patch, we no longer cache F.hasProfileData(). We simply
call the function again.
I'm doing this because:
- JumpThreadingPass also has a member variable named HasProfileData,
which is very confusing,
- the function is very lightweight, and
- this patch makes JumpThreading::runOnFunction more consistent with
JumpThreadingPass::run.
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70602
Summary:
Without this patch, the jump threading pass ignores profiling data
whenever we invoke the pass with the new pass manager.
Specifically, JumpThreadingPass::run calls runImpl with class variable
HasProfileData always set to false. In turn, runImpl sets
HasProfileData to false again:
HasProfileData = HasProfileData_;
In the end, we don't use profiling data at all with the new pass
manager.
This patch fixes the problem by passing F.hasProfileData() to runImpl.
The bug appears to have been introduced at:
https://reviews.llvm.org/D41461
which removed local variable HasProfileData in JumpThreadingPass::run
even though there was one more use left in the same function. As a
result, the remaining use ended referring to the class variable
instead.
Note that F.hasProfileData is an extremely lightweight function, so I
don't see the need to cache its result. Once this patch is approved,
I'm planning to stop caching the result of F.hasProfileData in
runOnFunction.
Reviewers: wmi, eli.friedman
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70509
The verification inside loop passes should be done under the
VerifyMemorySSA flag (enabled by EXPESIVE_CHECKS or explicitly with
opt), in order to not add to compile time during regular builds.
We may end up with a case where we have a widenable branch above the loop, but not all widenable branches within the loop have been removed. Since a widenable branch inhibit SCEVs ability to reason about exit counts (by design), we have a tradeoff between effectiveness of this optimization and allowing future widening of the branches within the loop. LoopPred is thought to be one of the most important optimizations for range check elimination, so let's pay the cost.
Bit-Tracking Dead Code Elimination (bdce) do not mark dbg.value as undef after
deleting instruction. which shows invalid state of variable in debugger. This
patches fixes this by marking the dbg.value as undef which depends on dead
instruction.
This fixes https://bugs.llvm.org/show_bug.cgi?id=41925
Patch by kamlesh kumar!
Differential Revision: https://reviews.llvm.org/D70040
Summary:
This patch moves various checks from ThreadEdge to new function
TryThreadEdge The rational behind this is that I'd like to use
ThreadEdge without its checks in my upcoming patch.
This patch preserves lightweight checks as assertions in ThreadEdge.
ThreadEdge does not repeat the cost check, however.
Reviewers: wmi
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70338
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
As a reminder, a "widenable branch" is the pattern "br i1 (and i1 X, WC()), label %taken, label %untaken" where "WC" is the widenable condition intrinsics. The semantics of such a branch (derived from the semantics of WC) is that a new condition can be added into the condition arbitrarily without violating legality.
Broaden the definition in two ways:
Allow swapped operands to the br (and X, WC()) form
Allow widenable branch w/trivial condition (i.e. true) which takes form of br i1 WC()
The former is just general robustness (e.g. for X = non-instruction this is what instcombine produces). The later is specifically important as partial unswitching of a widenable range check produces exactly this form above the loop.
Differential Revision: https://reviews.llvm.org/D70502
Moving accesses in MemorySSA at InsertionPlace::End, when an instruction is
moved into a block, almost always means insert at the end of the block, but
before the block terminator. This matters when the block terminator is a
MemoryAccess itself (an invoke), and the insertion must be done before
the terminator for the update to be correct.
Insert an additional position: InsertionPlace:BeforeTerminator and update
current usages where this applies.
Resolves PR44027.
This is mostly NFC, but I removed the setting of the guard's calling convention onto the WC call. Why? Because it was untested, and was producing an ill defined output as the declaration's convention wasn't been changed leaving a mismatch which is UB.
This code has never been enabled. While it is tested, it's complicating some refactoring. If we decide to re-implement this, doing it in SimplifyCFG would probably make more sense anyways.
With the widenable condition construct, we have the ability to reason about branches which can be 'widened' (i.e. made to fail more often). We've got a couple o transforms which leverage this. This patch just cleans up the API a bit.
This is prep work for generalizing our definition of a widenable branch slightly. At the moment "br i1 (and A, wc()), ..." is considered widenable, but oddly, neither "br i1 (and wc(), B), ..." or "br i1 wc(), ..." is. That clearly needs addressed, so first, let's centralize the code in one place.
Unswitch (and other loop transforms) like to generate loop exit blocks with unconditional successors, and phi nodes (LCSSA, or simple multiple exiting blocks sharing an exit). Generalize the "likely very rare exit" check slightly to handle this form.
This implements a version of the predicateLoopExits transform from IndVarSimplify extended to exploit widenable conditions - and thus be much wider in scope of legality. The code structure ends up being almost entirely different, so I chose to duplicate this into the LoopPredication pass instead of trying to reuse the code in the IndVars.
The core notions of the transform are as follows:
If we have a widenable condition which controls entry into the loop, we're allowed to widen it arbitrarily. Given that, it's simply a *profitability* question as to what conditions to fold into the widenable branch.
To avoid pass ordering issues, we want to avoid widening cases that would otherwise be dischargeable. Or... widen in a form which can still be discharged. Thus, we phrase the transform as selecting one analyzeable exit from the set of analyzeable exits to keep. This avoids creating pass ordering complexities.
Since none of the above proves that we actually exit through our analyzeable exits - we might exit through something else entirely - we limit ourselves to cases where a) the latch is analyzeable and b) the latch is predicted taken, and c) the exit being removed is statically cold.
Differential Revision: https://reviews.llvm.org/D69830
It was added in 2014 in 732e0aa9fb with one use in Scalarizer.cpp.
That one use was then removed when porting to the new pass manager in
2018 in b6f76002d9.
While the RFC and the desire to get off of static initializers for
cl::opt all still stand, this code is now dead, and I think we should
delete this code until someone is ready to do the migration.
There were many clients of CommandLine.h that were it transitively
through LLVMContext.h, so I cleaned that up in 4c1a1d3cf9.
Reviewers: beanz
Differential Revision: https://reviews.llvm.org/D70280
Summary:
When scalarizing PHI nodes we might try to examine/rewrite
InsertElement nodes in predecessors. If those predecessors
are unreachable from entry, then the IR in those blocks could
have unexpected properties resulting in infinite loops in
Scatterer::operator[].
By simply treating values originating from instructions in
unreachable blocks as undef we do not need to analyse them
further.
This fixes PR41723.
Reviewers: bjope
Reviewed By: bjope
Subscribers: bjope, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70171
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Currently we have limited support for outer loops with multiple basic
blocks after the inner loop exit. But the current checks for creating
PHIs for loop exit values only assumes the header and latches of the
outer loop. It is better to just skip incoming values defined in the
original inner loops. Those are handled earlier.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D70059
This patch implements a correct, but not terribly useful, transform. In particular, if we have a dynamic alloca in a loop which is guaranteed to execute, and provably not captured, we hoist the alloca out of the loop. The capture tracking is needed so that we can prove that each previous stack region dies before the next one is allocated. The transform decreases the amount of stack allocation needed by a linear factor (e.g. the iteration count of the loop).
Now, I really hope no one is actually using dynamic allocas. As such, why this patch?
Well, the actual problem I'm hoping to make progress on is allocation hoisting. There's a large draft patch out for review (https://reviews.llvm.org/D60056), and this patch was the smallest chunk of testable functionality I could come up with which takes a step vaguely in that direction.
Once this is in, it makes motivating the changes to capture tracking mentioned in TODOs testable. After that, I hope to extend this to trivial malloc free regions (i.e. free dominating all loop exits) and allocation functions for GCed languages.
Differential Revision: https://reviews.llvm.org/D69227
The change itself is straight forward and obvious, but ... there's an existing test checking for exactly the opposite. Both I and Artur think this is simply conservatism in the initial implementation. If anyone bisects a problem to this, a counter example will be very interesting.
Differential Revision: https://reviews.llvm.org/D69907
The basic idea of the transform is to convert variant loop exit conditions into invariant exit conditions by changing the iteration on which the exit is taken when we know that the trip count is unobservable. See the original patch which introduced the code for a more complete explanation.
The individual parts of this have been reviewed, the result has been fuzzed, and then further analyzed by hand, but despite all of that, I will not be suprised to see breakage here. If you see problems, please don't hesitate to revert - though please do provide a test case. The most likely class of issues are latent SCEV bugs and without a reduced test case, I'll be essentially stuck on reducing them.
(Note: A bunch of tests were opted out of the new transform to preserve coverage. That landed in a previous commit to simplify revert cycles if they turn out to be needed.)
Summary:
This patch factors out code to clone instructions -- partly for
readability and partly to facilitate an upcoming patch of my own.
Reviewers: wmi
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69861
We had a subtle, but nasty bug in our definition of a widenable branch, and thus in the transforms which used that utility. Specifically, we returned true for any branch which included a widenable condition within it's condition, regardless of whether that widenable condition also had other uses.
The problem is that the result of the WC() call is defined to be one particular value. As such, all users must agree as to what that value is. If we widen a branch without also updating *all other users* of the WC in the same way, we have broken the required semantics.
Most of the textual diff is updating existing transforms not to leave dead uses hanging around. They're largely NFC as the dead instructions would be immediately deleted by other passes. The reason to make these changes is so that the transforms preserve the widenable branch form.
In practice, we don't get bitten by this only because it isn't profitable to CSE WC() calls and the lowering pass from guards uses distinct WC calls per branch.
Differential Revision: https://reviews.llvm.org/D69916
This patch fixes two issues noticed by inspection when going to enable the loop predication code in IndVarSimplify.
Issue 1 - Both the LoopPredication transform, and the already on by default optimizeLoopExits transform, modify the exit count of the exits they modify. (either to 0 or Infinity) Looking at the code more closely, this was not reflected into SCEV and we were instead running later transforms with incorrect SCEVs. Fixing this requires forgetting the loop, weakening a too strong assert, and updating SCEV to not pessimize results when a loop is provable untaken. I haven't been able to find a test case to demonstrate the miscompile.
Issue 2 - For modules without a data layout, we can end up with unsized pointer typed exit counts. Just bail out of this case.
I think these are the last two issues which need addressed before we enable this by default. The code has already survived a decent amount of fuzzing without revealing either of the above.
Differential Revision: https://reviews.llvm.org/D69695
Summary:
This patch factors out code to merge a basic block with its sole
successor -- partly for readability and partly to facilitate an
upcoming patch of my own.
Reviewers: wmi
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69852
Summary:
This patch factors out common code to update the SSA form in
JumpThreading.cpp -- partly for readability and partly to facilitate
an coming patch of my own.
Reviewers: wmi
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69811
As discussed in https://bugs.llvm.org/show_bug.cgi?id=43870,
this transform is missing a crucial legality check:
the old (non-countable) loop would early-return upon first mismatch,
but there is no such guarantee for bcmp/memcmp.
We'd need to ensure that [PtrA, PtrA+NBytes) and [PtrB, PtrB+NBytes)
are fully dereferenceable memory regions. But that would limit
the transform to constant loop trip counts and would further
cripple it because dereferenceability analysis is *very* partial.
Furthermore, even if all that is done, every single test
would need to be rewritten from scratch.
So let's just give up.
Since SCEV can cache information about location of an instruction, it should be invalidated when the instruction is moved.
There should be similar bug in code sinking part of LICM, it will be fixed in a follow-up change.
Patch Author: Daniil Suchkov
Reviewers: asbirlea, mkazantsev, reames
Reviewed By: asbirlea
Subscribers: hiraditya, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D69370
This phi simplification transform was added with:
D45448
However as shown in PR43802:
https://bugs.llvm.org/show_bug.cgi?id=43802
...we must be careful not to propagate poison when we do the substitution.
There might be some more complicated analysis possible to retain the overflow flag,
but it should always be safe and easy to drop flags (we have similar behavior in
instcombine and other passes).
Differential Revision: https://reviews.llvm.org/D69442
We were already going to all of the trouble of computing maximum constant exit counts for each loop exit, we might as well expose them through the API. The change in IndVars is mostly to demonstrate that the wired up code works, but it als very slightly strengthens the transform. The strengthened case is rather narrow though: it requires one exactly analyzeable exit, one imprecisely analyzeable exit (with the upper bound less than the precise one), and one unanalyzeable exit. I coudn't construct a reasonably stable test case.
This does increase the memory usage of the BackedgeTakenCount by a factor of 2 in the worst case.
I also noticed the loop in IndVars is O(#Exits ^ 2). This doesn't change with this patch. A future patch will cache this result inside of SCEV to avoid requering.
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 375429
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 375426
Summary:
When MemCpyOpt is handling aggregate type values, if an instruction (let's call it P) between the targeting load (L) and store (S) clobbers the source pointer of L, it will try to hoist S before P. This process will also hoist S's data dependency instructions.
However, the current implementation has a bug that if one of S's dependency instructions is //also// a user of P, MemCpyOpt will not prevent it from being hoisted above P and cause a use-before-define error. For example, in the newly added test file (i.e. `aggregate-type-crash.ll`), it will try to hoist both `store %my_struct %1, %my_struct* %3` and its dependent, `%3 = bitcast i8* %2 to %my_struct*`, above `%2 = call i8* @my_malloc(%my_struct* %0)`. Creating the following BB:
```
entry:
%1 = bitcast i8* %4 to %my_struct*
%2 = bitcast %my_struct* %1 to i8*
%3 = bitcast %my_struct* %0 to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %2, i8* align 4 %3, i64 8, i1 false)
%4 = call i8* @my_malloc(%my_struct* %0)
ret void
```
Where there is a use-before-define error between `%1` and `%4`.
Update: The compiler for the Pony Programming Language [also encounter the same bug](https://github.com/ponylang/ponyc/issues/3140)
Patch by Min-Yih Hsu (myhsu)
Reviewers: eugenis, pcc, dblaikie, dneilson, t.p.northover, lattner
Reviewed By: eugenis
Subscribers: lenary, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66060
llvm-svn: 375403
We can end up with two loop exits whose exit counts are equivalent, but whose textual representation is different and non-obvious. For the sub-case where we have a series of exits which dominate one another (common), eliminate any exits which would iterate *after* a previous exit on the exiting iteration.
As noted in the TODO being removed, I'd always thought this was a good idea, but I've now seen this in a real workload as well.
Interestingly, in review, Nikita pointed out there's let another oppurtunity to leverage SCEV's reasoning. If we kept track of the min of dominanting exits so far, we could discharge exits with EC >= MDE. This is less powerful than the existing transform (since later exits aren't considered), but potentially more powerful for any case where SCEV can prove a >= b, but neither a == b or a > b. I don't have an example to illustrate that oppurtunity, but won't be suprised if we find one and return to handle that case as well.
Differential Revision: https://reviews.llvm.org/D69009
llvm-svn: 375379
Summary:
CVP, unlike InstCombine, does not run till exaustion.
It only does a single pass.
When dealing with those special binops, if we prove that they can
safely be demoted into their usual binop form,
we do set the no-wrap we deduced. But when dealing with usual binops,
we try to deduce both no-wraps.
So if we convert e.g. @llvm.uadd.with.overflow() to `add nuw`,
we won't attempt to check whether it can be `add nuw nsw`.
This patch proposes to call `processBinOp()` on newly-created binop,
which is identical to what we do for div/rem already.
Reviewers: nikic, spatel, reames
Reviewed By: nikic
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69183
llvm-svn: 375273
Summary:
It looks like this is the only missing statistic in the CVP pass.
Since we prove NSW and NUW separately i'd think we should count them separately too.
Reviewers: nikic, spatel, reames
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68740
llvm-svn: 375230
In the process of writing D69009, I realized we have two distinct sets of invariants within this single function, and basically no shared logic. The optimize loop exit transforms (including the new one in D69009) only care about *analyzeable* exits. Loop predication, on the other hand, has to reason about *all* exits. At the moment, we have the property (due to the requirement for an exact btc) that all exits are analyzeable, but that will likely change in the future as we add widenable condition support.
llvm-svn: 375138
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 375103
We can't normally stumble into that assertion because a tautological
*conditional* `br` in loop body is required, one that always
branches to loop latch. But that should have been always folded
to an unconditional branch before we get it.
But that is not guaranteed if the pass is run standalone.
So let's just promote the assertion into a proper check.
Fixes https://bugs.llvm.org/show_bug.cgi?id=43687
llvm-svn: 375100
Summary:
There are two cases where a block is merged into its predecessor and the
MergeBlockIntoPredecessor API is not used. Update the API so it can be
reused in the other cases, in order to avoid code duplication.
Cleanup motivated by D68659.
Reviewers: chandlerc, sanjoy.google, george.burgess.iv
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68670
llvm-svn: 375050
The problem is that we can have two loop exits, 'a' and 'b', where 'a' and 'b' would exit at the same iteration, 'a' precedes 'b' along some path, and 'b' is predicated while 'a' is not. In this case (see the previously submitted test case), we causing the loop to exit through 'b' whereas it should have exited through 'a'.
This only applies to loop exits where the exit counts are not provably inequal, but that isn't as much of a restriction as it appears. If we could order the exit counts, we'd have already removed one of the two exits. In theory, we might be able to prove inequality w/o ordering, but I didn't really explore that piece. Instead, I went for the obvious restriction and ensured we didn't predicate exits following non-predicateable exits.
Credit goes to Evgeny Brevnov for figuring out the problematic case. Fuzzing probably also found it (failures seen), but due to some silly infrastructure problems I hadn't gotten to the results before Evgeny hand reduced it from a benchmark (he manually enabled the transform). Once this is fixed, I'll try to filter through the fuzzer failures to see if there's anything additional lurking.
Differential Revision https://reviews.llvm.org/D68956
llvm-svn: 375038
Check that a call has an attached MemoryAccess before calling
getClobbering on the instruction.
If no access is attached, the instruction does not access memory.
Resolves PR43441.
llvm-svn: 374920
As reported by Joerg Sonnenberger in IRC, for 32-bit systems,
where pointer and size_t are 32-bit, if you use 64-bit-wide variable
in the loop, you could end up with loop exit count being of the type
wider than the size_t. Now, i'm not sure if we can produce `bcmp`
from that (just truncate?), but we certainly should not assert/miscompile.
llvm-svn: 374811
Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374784
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374743
Summary:
If the underlying alloca did not change, we do not necessarily need new
lifetime markers. This patch adds a check and reuses the old ones if
possible.
Reviewers: reames, ssarda, t.p.northover, hfinkel
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68900
llvm-svn: 374692
Summary:
This is a recommit, this originally landed in rL370454 but was
subsequently reverted in rL370788 due to
https://bugs.llvm.org/show_bug.cgi?id=43206
The reduced testcase was added to bcmp-negative-tests.ll
as @pr43206_different_loops - we must ensure that the SCEV's
we got are both for the same loop we are currently investigating.
Original commit message:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.
In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.
libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ
libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)
So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}
```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
#include "benchmark/benchmark.h"
template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
for (; a != a_end; ++a, ++b) {
if (*a != *b) return false;
}
return true;
}
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct Identical {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto Tmp = getVectorOfRandomNumbers<T>(count);
return std::make_pair(Tmp, std::move(Tmp));
}
};
struct InequalHalfway {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto V0 = getVectorOfRandomNumbers<T>(count);
auto V1 = V0;
V1[V1.size() / size_t(2)]++; // just change the value.
return std::make_pair(std::move(V0), std::move(V1));
}
};
template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
benchmark::DoNotOptimize(is_equal);
}
state.SetComplexityN(Length);
state.counters["eltcnt"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["eltcnt/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = []() {
for (const benchmark::CPUInfo::CacheInfo& I :
benchmark::CPUInfo::Get().caches) {
if (I.level == 2) return I.size;
}
return 0;
}();
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 432131 ns 432101 ns 1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO 0.86 N 0.86 N
BM_bcmp<uint8_t, Identical>_RMS 8 % 8 %
<...>
BM_bcmp<uint16_t, Identical>/256000 161408 ns 161409 ns 4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO 0.67 N 0.67 N
BM_bcmp<uint16_t, Identical>_RMS 25 % 25 %
<...>
BM_bcmp<uint32_t, Identical>/128000 81497 ns 81488 ns 8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO 0.71 N 0.71 N
BM_bcmp<uint32_t, Identical>_RMS 42 % 42 %
<...>
BM_bcmp<uint64_t, Identical>/64000 50138 ns 50138 ns 10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO 0.84 N 0.84 N
BM_bcmp<uint64_t, Identical>_RMS 27 % 27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 192405 ns 192392 ns 3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.38 N 0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 3 % 3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 127858 ns 127860 ns 5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 0 % 0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 49140 ns 49140 ns 14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.40 N 0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 18 % 18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 32101 ns 32099 ns 21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 1 % 1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 18593 ns 18590 ns 37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO 0.04 N 0.04 N
BM_bcmp<uint8_t, Identical>_RMS 37 % 37 %
<...>
BM_bcmp<uint16_t, Identical>/256000 18950 ns 18948 ns 37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO 0.08 N 0.08 N
BM_bcmp<uint16_t, Identical>_RMS 34 % 34 %
<...>
BM_bcmp<uint32_t, Identical>/128000 18627 ns 18627 ns 37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO 0.16 N 0.16 N
BM_bcmp<uint32_t, Identical>_RMS 35 % 35 %
<...>
BM_bcmp<uint64_t, Identical>/64000 18855 ns 18855 ns 37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO 0.32 N 0.32 N
BM_bcmp<uint64_t, Identical>_RMS 33 % 33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 9570 ns 9569 ns 73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.02 N 0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 9547 ns 9547 ns 74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.04 N 0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 9396 ns 9394 ns 73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.08 N 0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 30 % 30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 9499 ns 9498 ns 73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.16 N 0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 28 % 28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark Time CPU Time Old Time New CPU Old CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 -0.9570 -0.9570 432131 18593 432101 18590
<...>
BM_bcmp<uint16_t, Identical>/256000 -0.8826 -0.8826 161408 18950 161409 18948
<...>
BM_bcmp<uint32_t, Identical>/128000 -0.7714 -0.7714 81497 18627 81488 18627
<...>
BM_bcmp<uint64_t, Identical>/64000 -0.6239 -0.6239 50138 18855 50138 18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 -0.9503 -0.9503 192405 9570 192392 9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 -0.9253 -0.9253 127858 9547 127860 9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 -0.8088 -0.8088 49140 9396 49140 9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 -0.7041 -0.7041 32101 9499 32099 9498
```
What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
linearly decreases with element size.
For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
As it can be seen from the full output {F8768210}, the `memcmp()` is almost
universally worse, independent of the element size (and thus buffer size) when
element count is less than 8.
So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.
Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp
Program result-new
MultiSourc...Benchmarks/7zip/7zip-benchmark 79.00
MultiSource/Applications/d/make_dparser 3.00
SingleSource/UnitTests/vla 2.00
MultiSource/Applications/Burg/burg 1.00
MultiSourc.../Applications/JM/lencod/lencod 1.00
MultiSource/Applications/lemon/lemon 1.00
MultiSource/Benchmarks/Bullet/bullet 1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs 1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc 1.00
MultiSourc...Prolangs-C/simulator/simulator 1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text
Program result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test 753.00 833.00 10.6%
test-suite...marks/7zip/7zip-benchmark.test 1001697.00 966657.00 -3.5%
test-suite...ngs-C/simulator/simulator.test 32369.00 32321.00 -0.1%
test-suite...plications/d/make_dparser.test 89585.00 89505.00 -0.1%
test-suite...ce/Applications/Burg/burg.test 40817.00 40785.00 -0.1%
test-suite.../Applications/lemon/lemon.test 47281.00 47249.00 -0.1%
test-suite...TimberWolfMC/timberwolfmc.test 250065.00 250113.00 0.0%
test-suite...chmarks/MallocBench/gs/gs.test 149889.00 149873.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 769585.00 769569.00 -0.0%
test-suite.../Benchmarks/Bullet/bullet.test 770049.00 770049.00 0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128 NaN NaN nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32 NaN NaN nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4 NaN NaN nan%
Geomean difference nan%
result-old result-new diff
count 1.000000e+01 10.00000 10.000000
mean 3.152090e+05 311695.40000 0.006749
std 3.790398e+05 372091.42232 0.036605
min 7.530000e+02 833.00000 -0.034981
25% 4.243300e+04 42401.00000 -0.000866
50% 1.197370e+05 119689.00000 -0.000392
75% 6.397050e+05 639705.00000 -0.000005
max 1.001697e+06 966657.00000 0.106242
```
I don't have timings though.
And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.
Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???
Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet
Reviewed By: courbet
Subscribers: miyuki, hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61144
llvm-svn: 374662
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374634
This is really a known bits style transformation, but known bits isn't context sensitive. The particular case which comes up happens to involve a range which allows range based reasoning to eliminate the mask pattern, so handle that case specifically in CVP.
InstCombine likes to generate the mask-by-low-bits pattern when widening an arithmetic expression which includes a zext in the middle.
Differential Revision: https://reviews.llvm.org/D68811
llvm-svn: 374506
Summary:
The rule for the moveAllAfterMergeBlocks API si for all instructions
from `From` to have been moved to `To`, while keeping the CFG edges (and
block terminators) unchanged.
Update all the callsites for moveAllAfterMergeBlocks to follow this.
Pending follow-up: since the same behavior is needed everytime, merge
all callsites into one. The common denominator may be the call to
`MergeBlockIntoPredecessor`.
Resolves PR43569.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68659
llvm-svn: 374177
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"
This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.
The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.
llvm-svn: 374091
* Adds a TypeSize struct to represent the known minimum size of a type
along with a flag to indicate that the runtime size is a integer multiple
of that size
* Converts existing size query functions from Type.h and DataLayout.h to
return a TypeSize result
* Adds convenience methods (including a transparent conversion operator
to uint64_t) so that most existing code 'just works' as if the return
values were still scalars.
* Uses the new size queries along with ElementCount to ensure that all
supported instructions used with scalable vectors can be constructed
in IR.
Reviewers: hfinkel, lattner, rkruppe, greened, rovka, rengolin, sdesmalen
Reviewed By: rovka, sdesmalen
Differential Revision: https://reviews.llvm.org/D53137
llvm-svn: 374042
Summary: LoopRotate is a loop pass and SE should always be available.
Reviewers: anemet, asbirlea
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D68573
llvm-svn: 374026
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374017
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.
https://reviews.llvm.org/D68439
llvm-svn: 373935
There are no users that pass in LazyValueInfo, so we can simplify the
function a bit.
Reviewers: brzycki, asbirlea, davide
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D68297
llvm-svn: 373488
The static analyzer is warning about a potential null dereference, but we should be able to use cast<PHINode> directly and if not assert will fire for us.
llvm-svn: 373481
This patch implements a variation of a well known techniques for JIT compilers - we have an implementation in tree as LoopPredication - but with an interesting twist. This version does not assume the ability to execute a path which wasn't taken in the original program (such as a guard or widenable.condition intrinsic). The benefit is that this works for arbitrary IR from any frontend (including C/C++/Fortran). The tradeoff is that it's restricted to read only loops without implicit exits.
This builds on SCEV, and can thus eliminate the loop varying portion of the any early exit where all exits are understandable by SCEV. A key advantage is that fixing deficiency exposed in SCEV - already found one while writing test cases - will also benefit all of full redundancy elimination (and most other loop transforms).
I haven't seen anything in the literature which quite matches this. Given that, I'm not entirely sure that keeping the name "loop predication" is helpful. Anyone have suggestions for a better name? This is analogous to partial redundancy elimination - since we remove the condition flowing around the backedge - and has some parallels to our existing transforms which try to make conditions invariant in loops.
Factoring wise, I chose to put this in IndVarSimplify since it's a generally applicable to all workloads. I could split this off into it's own pass, but we'd then probably want to add that new pass every place we use IndVars. One solid argument for splitting it off into it's own pass is that this transform is "too good". It breaks a huge number of existing IndVars test cases as they tend to be simple read only loops. At the moment, I've opted it off by default, but if we add this to IndVars and enable, we'll have to update around 20 test files to add side effects or disable this transform.
Near term plan is to fuzz this extensively while off by default, reflect and discuss on the factoring issue mentioned just above, and then enable by default. I also need to give some though to supporting widenable conditions in this framing.
Differential Revision: https://reviews.llvm.org/D67408
llvm-svn: 373351
Summary:
The BasicBlockManager is potentially broken and should not be used.
Replace all uses of the BasicBlockPass with a FunctionBlockPass+loop on
blocks.
Reviewers: chandlerc
Subscribers: jholewinski, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68234
llvm-svn: 373254
If we happen to have the same div in two basic blocks,
and in one of those we also happen to have the rem part,
we'd match the div-rem pair, but the wrong ones.
So let's drop overly-ambiguous assert.
Fixes https://bugs.llvm.org/show_bug.cgi?id=43500
llvm-svn: 373167
The static analyzer is warning about a potential null dereference, but we should be able to use cast<StructType> directly and if not assert will fire for us.
llvm-svn: 373095
Summary:
This patch extends the current capabilities in loop fusion to fuse guarded loops
(as defined in https://reviews.llvm.org/D63885). The patch adds the necessary
safety checks to ensure that it safe to fuse the guarded loops (control flow
equivalent, no intervening code, and same guard conditions). It also provides an
alternative method to perform the actual fusion of guarded loops. The mechanics
to fuse guarded loops are slightly different then fusing non-guarded loops, so I
opted to keep them separate methods. I will be cleaning this up in later
patches, and hope to converge on a single method to fuse both guarded and
non-guarded loops, but for now I think the review will be easier to keep them
separate.
Reviewers: jdoerfert, Meinersbur, dmgreen, etiotto, Whitney
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65464
llvm-svn: 373018
For a runtime loop if we can compute its trip count upperbound:
Don't unroll if:
1. loop is not guaranteed to run either zero or upperbound iterations; and
2. trip count upperbound is less than UnrollMaxUpperBound
Unless user or TTI asked to do so.
If unrolling, limit unroll factor to loop's trip count upperbound.
Differential Revision: https://reviews.llvm.org/D62989
Change-Id: I6083c46a9d98b2e22cd855e60523fdc5a4929c73
llvm-svn: 373017
For large functions, verifying the whole function after each loop takes
non-linear time.
Differential Revision: https://reviews.llvm.org/D67571
llvm-svn: 372924
While Promoting alloca instruction of Vector Type,
Check total size in bits of its slices too.
If they don't match, don't promote the alloca instruction.
Bug : https://bugs.llvm.org/show_bug.cgi?id=42585
llvm-svn: 372480
Summary:
FlattenCFG may erase unnecessary blocks, which also invalidates iterators to those erased blocks.
Before this patch, `iterativelyFlattenCFG` could try to increment a BB iterator after that BB has been removed and crash.
This patch makes FlattenCFGPass use `WeakVH` to skip over erased blocks.
Reviewers: dblaikie, tstellar, davide, sanjoy, asbirlea, grosser
Reviewed By: asbirlea
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67672
llvm-svn: 372347
In the example from:
https://bugs.llvm.org/show_bug.cgi?id=38502
...we hit infinite looping/crashing because we have non-standard IR -
an instruction operand is used before defined.
This and other unusual constructs are allowed in unreachable blocks,
so avoid the problem by using DominatorTree to step around landmines.
Differential Revision: https://reviews.llvm.org/D67766
llvm-svn: 372339
Add an ability to specify the max full unroll count for LoopUnrollPass pass
in pass options.
Reviewers: fhahn, fedor.sergeev
Reviewed By: fedor.sergeev
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D67701
llvm-svn: 372305
We use `< UP.Threshold` later on, so we should use LoopSize + 1, to
allow unrolling if the result won't exceed to loop size.
Fixes PR43305.
Reviewers: efriedma, dmgreen, paquette
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D67594
llvm-svn: 372084
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
Currently we only rely on the induction increment to come before the
condition to ensure the required instructions get moved to the new
latch.
This patch duplicates and moves the required instructions to the
newly created latch. We move the condition to the end of the new block,
then process its operands. We stop at operands that are defined
outside the loop, or are the induction PHI.
We duplicate the instructions and update the uses in the moved
instructions, to ensure other users remain intact. See the added
test2 for such an example.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D67367
llvm-svn: 371595
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
If we have:
bb5:
br i1 %arg3, label %bb6, label %bb7
bb6:
%tmp = getelementptr inbounds i32, i32* %arg1, i64 2
store i32 3, i32* %tmp, align 4
br label %bb9
bb7:
%tmp8 = getelementptr inbounds i32, i32* %arg1, i64 2
store i32 3, i32* %tmp8, align 4
br label %bb9
bb9: ; preds = %bb4, %bb6, %bb7
...
We can't sink stores directly into bb9.
This patch creates new BB that is successor of %bb6 and %bb7
and sinks stores into that block.
SplitFooterBB is the parameter to the pass that controls
that behavior.
Change-Id: I7fdf50a772b84633e4b1b860e905bf7e3e29940f
Differential: https://reviews.llvm.org/D66234
llvm-svn: 371089
When I dug into this, it turns out to be *much* more involved than I'd realized and doesn't actually simplify anything.
The general purpose of the leader table is that we want to find the most-dominating definition quickly. The problem for equivalance folding is slightly different; we want to find the most dominating *value* whose definition block dominates our use quickly.
To make this change, we'd end up having to restructure the leader table (either the sorting thereof, or maybe even introducing multiple leader tables per value) and that complexity is just not worth it.
llvm-svn: 370824
This extends the existing logic for propagating constant expressions in an analogous manner for what we do across basic blocks. The core point is that we chose some order of operands, and canonicalize uses towards that one.
The heuristic used is inspired by the one used across blocks; in a follow up change, I'd plan to common them so that the cross block version uses the slightly stronger ordering herein.
As noted by the TODOs in the code, there's a good amount of room for improving the existing code and making it more powerful. Some follow up work planned.
Differential Revision: https://reviews.llvm.org/D66977
llvm-svn: 370791
Use a { iN undef, i1 false } struct as the base, and only insert
the first operand, instead of using { iN undef, i1 undef } as the
base and inserting both. This is the same as what we do in InstCombine.
Differential Revision: https://reviews.llvm.org/D67034
llvm-svn: 370573
This is an updated version of https://reviews.llvm.org/D66909 to fix PR42605.
Basically, current phi translatation translates an old value number to an new
value number for a call instruction based on the literal equality of call
expression, without verifying there is no clobber in between. This is incorrect.
To get a finegrain check, use MachineDependence analysis to do the job. However,
this is still not ideal. Although given a call instruction,
`MemoryDependenceResults::getCallDependencyFrom` returns identical call
instructions without clobber in between using MemDepResult with its DepType to
be `Def`. However, identical is too strict here and we want it to be relaxed a
little to consider phi-translation -- callee is the same, param operands can be
different. That means changing the semantic of `MemDepResult::Def` and I don't
know the potential impact.
So currently the patch is still conservative to only handle
MemDepResult::NonFuncLocal, which means the current call has no function local
clobber. If there is clobber, even if the clobber doesn't stand in between the
current call and the call with the new value, we won't do phi-translate.
Differential Revision: https://reviews.llvm.org/D67013
llvm-svn: 370547