Currently an indirect call produces the following sequence on PCRelative mode:
extern void function( );
extern void (*ptrfunc) ( );
void g() {
ptrfunc=function;
}
void f() {
(*ptrfunc) ( );
}
Producing
paddi 3, 0, .LC0@PCREL, 1
ld 3, 0(3)
std 2, 24(1)
ld 12, 0(3)
mtctr 12
bctrl
ld 2, 24(1)
Though the caller does not use or preserve r2, it is still saved and restored
across a function call. This patch is added to remove these redundant save and
restores for indirect calls.
Differential Revision: https://reviews.llvm.org/D77749
Summary:
This commit recommits the reversion of https://reviews.llvm.org/D75039.
Concensus appears to be in favour of assembly-time resolution of
these ADR and LDR relocations, in line with GNU. The previous
backout broke many lld tests, now fixed by Peter Smith in
61bccda9d9.
Reviewers: psmith
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78301
Add initial support for PC Relative addressing to get jump table base
address instead of using TOC.
Differential Revision: https://reviews.llvm.org/D75931
Add support to optionally emit different instrumentation for accesses to
volatile variables. While the default TSAN runtime likely will never
require this feature, other runtimes for different environments that
have subtly different memory models or assumptions may require
distinguishing volatiles.
One such environment are OS kernels, where volatile is still used in
various places for various reasons, and often declare volatile to be
"safe enough" even in multi-threaded contexts. One such example is the
Linux kernel, which implements various synchronization primitives using
volatile (READ_ONCE(), WRITE_ONCE()). Here the Kernel Concurrency
Sanitizer (KCSAN) [1], is a runtime that uses TSAN instrumentation but
otherwise implements a very different approach to race detection from
TSAN.
While in the Linux kernel it is generally discouraged to use volatiles
explicitly, the topic will likely come up again, and we will eventually
need to distinguish volatile accesses [2]. The other use-case is
ignoring data races on specially marked variables in the kernel, for
example bit-flags (here we may hide 'volatile' behind a different name
such as 'no_data_race').
[1] https://github.com/google/ktsan/wiki/KCSAN
[2] https://lkml.kernel.org/r/CANpmjNOfXNE-Zh3MNP=-gmnhvKbsfUfTtWkyg_=VqTxS4nnptQ@mail.gmail.com
Author: melver (Marco Elver)
Reviewed-in: https://reviews.llvm.org/D78554
If a 16-bit thumb STM with writeback stores the base register but it isn't the
first register in the list, then an unknown value is stored. The load/store
optimizer knows this and generates a 32-bit STM without writeback instead, but
thumb2 size reduction converts it into a 16-bit STM. Fix this by having thumb2
size reduction notice such STMs and leave them as they are.
Differential Revision: https://reviews.llvm.org/D78493
This adds some extra processing into the Pre-RA ARM load/store optimizer
to detect and merge MVE loads/stores and adds of the same base. This we
don't always turn into a post-inc during ISel, and due to the nature of
it being a graph we don't always know an order to use for the nodes, not
knowing which nodes to make post-inc and which to use the new post-inc
of. After ISel, we have an order that we can use to post-inc the
following instructions.
So this looks for a loads/store with a starting offset of 0, and an
add/sub from the same base, plus a number of other loads/stores. We then
do some checks and convert the zero offset load/store into a postinc
variant. Any loads/stores after it have the offset subtracted from their
immediates. For example:
LDR #4 LDR #4
LDR #0 LDR_POSTINC #16
LDR #8 LDR #-8
LDR #12 LDR #-4
ADD #16
It only handles MVE loads/stores at the moment. Normal loads/store will
be added in a followup patch, they just have some extra details to
ensure that we keep generating LDRD/LDM successfully.
Differential Revision: https://reviews.llvm.org/D77813
Prior to this patch, llvm-objdump would only look in the last section
(according to the section header table order) that matched an address
for a symbol when identifying the target symbol of a call or branch
operation. If there are multiple sections with the same address, due to
some of them being empty, it did not look in those, even if the symbol
couldn't be found in the first section looked in.
This patch causes llvm-objdump to look in all sections for possible
candidate symbols. If there are multiple possible symbols, it picks one
from a non-empty section, if possible (as that is more likely to be the
"real" symbol since functions can't really be in emptiy sections),
before falling back to those in empty sections. If all else fails, it
falls back to absolute symbols as it did before.
Differential Revision: https://reviews.llvm.org/D78549
Reviewed by: grimar, Higuoxing
The `Offset` field is used to set the file offset of a program header.
In a normal object it should not be greater than the minimal offset
of sections included into segment.
This patch adds a check for that and adds tests.
Differential revision: https://reviews.llvm.org/D78304
Summary:
Rationale:
Using the --debug-only flag requires a debug build. Also, the debug output is not always consistent over different builds.
This change avoids all problems by just testing the generated assembly for AVX.
Reviewers: craig.topper, mehdi_amini, nicolasvasilache
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78609
This patch exploits rldimi instruction for patterns like
`or %a, 0b000011110000`, which saves number of instructions when the
operand has only one use, compared with `li-ori-sldi-or`.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D77850
Summary:
When an irreducible SCC is converted into a new natural loop, existing
loops included in that SCC now become children of the new loop. The
logic that moves these loops from the parent loop to the new loop
invoked undefined behaviour when it modified the container that it was
iterating over. Fixed this by first extracting all the loops that are
to be removed from the parent.
Fixes bug 45623.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D78544
If we have a dependence between an abstract attribute A to an abstract
attribute B such hat changes in A should trigger an update of B, we do
not need to keep the dependence around once the update was triggered. If
the dependence is still required the update will reinsert it into the
dependence map, if it is not we avoid triggering B in the future. This
replaces the "recompute interval" mechanism we used before to prune
stale dependences.
Number of required iterations is generally down, compile time for the
module pass (not really the CGSCC pass) is down quite a bit.
There is one test change which looks like an artifact in the undefined
behavior AA that needs to be looked at.
In a future change we should properly fix xray_fn_idx to use PC-relative
addresses as well, but for now let's keep absolute addresses until sled
addresses are all fixed.
Summary:
As we have discussed previously (e.g. in D63992 / D64090 / [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]]), `sub` instruction
can almost be considered non-canonical. While we do convert `sub %x, C` -> `add %x, -C`,
we sparsely do that for non-constants. But we should.
Here, i propose to interpret `sub %x, %y` as `add (sub 0, %y), %x` IFF the negation can be sinked into the `%y`
This has some potential to cause endless combine loops (either around PHI's, or if there are some opposite transforms).
For former there's `-instcombine-negator-max-depth` option to mitigate it, should this expose any such issues
For latter, if there are still any such opposing folds, we'd need to remove the colliding fold.
In any case, reproducers welcomed!
Reviewers: spatel, nikic, efriedma, xbolva00
Reviewed By: spatel
Subscribers: xbolva00, mgorny, hiraditya, reames, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68408
FMLA/FMLS f16 indexed patterns added.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45467
Removed redundant v2f32 vector_extract indexed pattern since
Instruction Selection is able to match v4f32 instead.
xray_instr_map contains absolute addresses of sleds, which are relocated
by `R_*_RELATIVE` when linked in -pie or -shared mode.
By making these addresses relative to PC, we can avoid the dynamic
relocations and remove the SHF_WRITE flag from xray_instr_map. We can
thus save VM pages containg xray_instr_map (because they are not
modified).
This patch changes x86-64 and bumps the sled version to 2. Subsequent
changes will change powerpc64le and AArch64.
Reviewed By: dberris, ianlevesque
Differential Revision: https://reviews.llvm.org/D78082
These are mostly replicated from D78430 (instsimplify).
If we implement more general transforms for instcombine,
then we probably don't need to add that complexity to instsimplify.
This is an optimization that applies to global addresses and
allows for the following transformation:
Convert this:
paddi r3, 0, symbol@PCREL, 1
ld r4, 8(r3)
To this:
pld r4, symbol@PCREL+8(0), 1
An instruction is saved and the linker can do the addition when
the symbol is resolved.
Differential Revision: https://reviews.llvm.org/D76160
Summary:
Without this we could silently accept an invalid prologue because the
default DataExtractor behavior is to return an empty string when
reaching the end of file. And empty string is also used to terminate
these lists.
This makes the parsing code slightly more complicated, but this
complexity will go away once the parser starts working with truncating
data extractors. The reason I am doing it this way is because without
this, the truncation would regress the quality of error messages (right
now, we produce bad error messages only near EOF, but truncation would
make everything behave as if it was near EOF).
Reviewers: dblaikie, probinson, jhenderson
Subscribers: hiraditya, MaskRay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77555
This validates that sections listed for a segment in the YAML
declaration are ordered by their file offsets.
It might help to simplify the file size computation, but also
is useful by itself as helps to avoid issues in test cases and
to maintain their readability.
Differential revision: https://reviews.llvm.org/D78361
The logic in ARMParallelDSP is setup to merge two 16-bits loads into
a 32-bit load and feed them into the smlads. This requires that four
loads are combined for the four inputs, but there wasn't actually a
check for this.
Differential Revision: https://reviews.llvm.org/D78492
Before we kept the first applicable `ident_t*` during deduplication of
runtime calls. The problem is that "first" is dependent on the iteration
order of a DenseMap. Since the proper solution, which is to combine the
information from all `ident_t*`, should be deterministic on its own, we
will not try to make the iteration order deterministic. Instead, we will
create a fresh `ident_t*` if there is not a unique existing `ident_t*`
to pick.
Don't error on Config.KeepFileSymbols for COFF and Mach-O.
Original description:
GNU objcopy removes STT_FILE symbols for strip-debug operations, and
keeps them for --discard-all operation. Match their behaviour for
llvm-objcopy.
Bug: https://github.com/android/ndk/issues/1212
Differential Revision: https://reviews.llvm.org/D76675