This essentially sets up mlir-pdll to function in a similar manner to mlir-tblgen. Aside
from the boilerplate of configuring CMake and setting up a basic initial test, two new
options are added to mlir-pdll to mirror options provided by tblgen:
* -d
This option generates a dependency file (i.e. a set of build time dependencies) while
processing the input file.
* --write-if-changed
This option only writes to the output file if the data would have changed, which for
the build system prevents unnecesarry rebuilds if the file was touched but not actually
changed.
Differential Revision: https://reviews.llvm.org/D124075
In the case of anonymous defs this may return the name of the base def class,
which can lead to two different defs with the same name (which hits an assert).
This commit adds a new `getUniqueDefName` method that returns a unique name
for the constraint.
Differential Revision: https://reviews.llvm.org/D124074
The callback is expected to create a branch to the ContinuationBB (sometimes called FiniBB in some lambdas) argument when finishing. This creates problems:
1. The InsertPoint used for CodeGenIP does not need to be the end of a block. If it is not, a naive callback will insert a branch instruction into the middle of the block.
2. The BasicBlock the CodeGenIP is pointing to may or may not have a terminator. There is an conflict where to branch to if the block already has a terminator.
3. Some API functions work only with block having a terminator. Some workarounds have been used to insert a temporary terminator that is removed again.
4. Some callbacks are sensitive to whether the BasicBlock has a terminator or not. This creates a callback ordering problem where different callback may have different behaviour depending on whether a previous callback created a terminator or not. The problem also exists for FinalizeCallbackTy where some callbacks do create branch to another "continue" block, but unlike BodyGenCallbackTy does not receive the target as argument. This is not addressed in this patch.
With this patch, the callback receives an CodeGenIP into a BasicBlock where to insert instructions. If it has to insert control flow, it can split the block at that position as needed but otherwise no separate ContinuationBB is needed. In particular, a callback can be empty without breaking the emitted IR. If the caller needs the control flow to branch to a specific target, it can insert the branch instruction itself and pass an InsertPoint before the terminator to the callback.
Certain frontends such as Clang may expect the current IRBuilder position to be at the end of a basic block. In this case its callbacks must split the block at CodeGenIP before setting the IRBuilder position such that the instructions after CodeGenIP are moved to another basic block and before returning create a new branch instruction to the split block.
Some utility functions such as `splitBB` are supporting correct splitting of BasicBlocks, independent of whether they have a terminator or not, returning/setting the InsertPoint of an IRBuilder to the end of split predecessor block, and optionally omitting creating a branch to the split successor block to be added later.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D118409
This change borrows the ideas from `computeExpanded/CollapsedLayoutMap`
and computes the dynamic strides at runtime for the memref descriptors.
Differential Revision: https://reviews.llvm.org/D124001
This commit adds the visitNonControlFlowArguments method to
DataFlowAnalysis, allowing analyses to provide lattice values for the
arguments to a RegionSuccessor block that aren't directly tied to an
op's inputs. For example, integer range interface can use this method
to infer bounds for the step values in loops.
This method has a default implementation that keeps the old behavior
of assigning a pessimistic fixedpoint state to all such arguments.
Reviewed By: Mogball, rriddle
Differential Revision: https://reviews.llvm.org/D124021
This diff causes mlir-tblgen to generate code for an additional builder for an
operation argument with a return type that can be inferred *AND* an attribute in
the argument list can be "unwrapped." (Previously, the unwrapped build function
was only generated for builders with explicit return types in separate or
aggregate form.) As an example, this builder might be used by code that creates
operations that implement the `SameOperandsAndResultType` interface. A test case
was created.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D124043
This diff allows the EnumAttr class to be used for bit enum attributes (in
addition to previously supported integer enum attributes). While integer
and bit enum attributes share many common implementation aspects, parsing
bit enum values requires a separate implementation. This is accomplished
by creating empty parser and printer strings in the EnumAttrInfo record,
and having derived classes (specific to bit and integer enums) override with
an appropriate parser/printer string.
To support existing bit enums that may use a vertical bar separator, the
parser is modified to support the | token.
Tests were added for bit enums alongside integer enums.
Future diffs for fastmath attributes in the arithmetic dialect will use these
changes.
(resubmission of earlier abaondoned diff, updated to reflect subsequent changes
in the repository)
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D123880
The verifier of llvm.mlir.addressof did not properly account for opaque pointers, that is, the pointer type not having an element type equal to the type of the referenced global or function. This patch fixes that by skipping the test for the element type if the pointer is opaque.
Differential Revision: https://reviews.llvm.org/D124333
After https://reviews.llvm.org/D119743 added the `AutomaticAllocationScope`
trait to loop-like constructs, the vector transfer full/partial splitting pass
started inserting allocations for temporaries within the closest loop rather
than the closest function (or other allocation scope such as `async.execute`).
While this is correct as long as the lowered code takes care of automatic
deallocation at the end of each iteration of the loop, this interferes with
downstream optimizations that expect `alloca`s to be at the function level.
Step over loops when looking for the closest allocation scope in vector
transfer full/partial splitting pass thus restoring the original behavior.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D124366
This is likely preferable to having it crash if one were to specify an opaque pointer type, and the actual element type is unused either way.
Differential Revision: https://reviews.llvm.org/D124334
The SparseTensor passes currently use opaque numbers for the CLI, despite using an enum internally. This patch exposes the enums instead of numbered items that are matched back to the enum.
Fixes GitHub issue #53389
Reviewed by: aartbik, mehdi_amini
Differential Revision: https://reviews.llvm.org/D123876
Run `one-shot-bufferize` instead of `linalg-comprehensive-module-bufferize` and move some test cases to their respective dialects.
Differential Revision: https://reviews.llvm.org/D124323
Now that dialect constructors are generated in the .cpp file, we can
drop all of the dependent dialect includes from the .h file.
Differential Revision: https://reviews.llvm.org/D124298
As a fallback mechanism, if no entry was supplied for a given address space, the size or alignment for a pointer type with the default address space is returned instead.
This code currently crashes with opaque pointers, as it tries to construct a typed pointer type from the opaque pointer type, leading to a null pointer dereference when fetching the element type.
This patch fixes the issue by handling the opaque pointer cases explicitly.
Differential Revision: https://reviews.llvm.org/D124290
Using opaque pointers in function signatures leads to an attempt to recursively convert all types, including sub types in LLVM types. In the case of LLVM pointers, it may not have a subtype aka element type if it is opaque which would then lead to a null pointer dereference.
Differential Revision: https://reviews.llvm.org/D124291
This change fixes `CollapsedLayoutMap` for cases where the collapsed
dims are size 1. The cases where inner most dims are size 1 and
noncontiguous can be represented by the strided form and therefore can
be allowed. For such cases, the new stride should be of the next entry
in an association whose dimension is not size 1. If the next entry is
dynamic, it's not possible to decide which stride to use at compilation
time and the stride is set to dynamic.
Differential Revision: https://reviews.llvm.org/D124137
Currently, the sequence of Transform dialect operations only supports a single
use of each operand (verified by the `transform.sequence` operation). This was
originally motivated by the need to guard against accessing a payload IR
operation associated with a transform IR value after this operation has likely
been rewritten by a transformation. However, not all Transform dialect
operations rewrite payload IR, in particular the "navigation" operation such as
`transform.pdl_match` do not.
Introduce memory effects to the Transform dialect operations to describe their
effect on the payload IR and the mapping between payload IR opreations and
transform IR values. Use these effects to replace the single-use rule, allowing
repeated reads and disallowing use-after-free, where operations with the "free"
effect are considered to "consume" the transform IR value and rewrite the
corresponding payload IR operations). As an additional improvement, this
enables code motion transformation on the transform IR itself.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D124181
The bubble up logic was written by assuming the slice operation is
always a normal slice that outputs a tensor with the same rank.
Differential Revision: https://reviews.llvm.org/D124283
This allows printing the users of an operation as proposed in the git issue #53286.
To be able to refer to operations with no result, these operations are assigned an
ID in SSANameState.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D124048
Add shape func op for use (primarily) in shape function_library op. Allows
setting default dialect for some simpler authoring. This is a minimal version
of the ops needed.
Differential Revision: https://reviews.llvm.org/D124055
If there is only one single element in the vector, then we can
just extract the element to compute the final result.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D124129
vector.broadcast can inject all size one dimensions. If it's
followed by a vector.shape_cast to the original type, we can
cancel the op pair, like cancelling consecutive shape_cast ops.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D124094
* Move Module Bufferization to the bufferization dialect. The implementation is split into `OneShotModuleBufferize.cpp` and `FuncBufferizableOpInterfaceImpl.cpp`, so that the external model implementation can be easily moved to the func dialect in the future.
* Split and clean up test cases. A few test cases are still remaining in Linalg and will be updated separately.
* `linalg.inplaceable` is renamed to `bufferization.writable` to accurately reflect its current usage.
* Attributes and their verifiers are moved from the Linalg dialect to the Bufferization dialect.
* Expand documentation.
* Add a new flag to One-Shot Bufferize to allow for function boundary bufferization.
Differential Revision: https://reviews.llvm.org/D122229
FuncOps are now less special. They must still be analyzed + bufferized in a certain order, but they are now bufferized same as other ops that have a region: Bufferize the op first (`bufferize` interface method), then bufferize the region body with other bufferization patterns. In the case of FuncOps, the function signature is bufferized together with ReturnOps. Similar to how, e.g., scf.for ops are bufferized together with scf.yield ops.
This change is essentially a reimplementation of the FuncOp bufferization, but mostly NFC from a user's perspective (apart from error messages). This change is in preparation of moving the code to the bufferization dialect.
Differential Revision: https://reviews.llvm.org/D123214
The bufferization driver was previously using a GreedyPatternRewriter. This was problematic because bufferization must traverse ops top-to-bottom. The GreedyPatternRewriter was previously configured via `useTopDownTraversal`, but this was a hack; this API was just meant for performance improvements and should not affect the result of the rewrite.
BEGIN_PUBLIC
No public commit message needed.
END_PUBLIC
Differential Revision: https://reviews.llvm.org/D123618
This patch replaces current fold function with the common constant fold funtion in order to cover the situation of constant splat.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D124236
These scripts do not appear to require bash, and while /bin/sh
is not guaranteed either it's more commonly available.
Fixes tests on NixOS and in certain sandbox build environments.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D124205
Insert the select op before the combiner op when vectorizing a
reduction loop that needs a mask, so the vectorized reduction loop
can pass isLoopParallel check and be transformed correctly in later
passes.
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D124047
When Location tracking support for block arguments was added, we
discussed various approaches to threading support for this through
function-like argument parsing. At the time, we added a parallel array
of locations that could hold this. It turns out that that approach was
verbose and error prone, roughly no one adopted it.
This patch takes a different approach, adding an optional source
locator to the UnresolvedOperand class. This fits much more naturally
into the standard structure we use for representing locators, and gives
all the function like dialects locator support for free (e.g. see the
test adding an example for the LLVM dialect).
Differential Revision: https://reviews.llvm.org/D124188
This introduces a pair of ops to the Transform dialect that connect it to PDL
patterns. Transform dialect relies on PDL for matching the Payload IR ops that
are about to be transformed. For this purpose, it provides a container op for
patterns, a "pdl_match" op and transform interface implementations that call
into the pattern matching infrastructure.
To enable the caching of compiled patterns, this also provides the extension
mechanism for TransformState. Extensions allow one to store additional
information in the TransformState and thus communicate it between different
Transform dialect operations when they are applied. They can be added and
removed when applying transform ops. An extension containing a symbol table in
which the pattern names are resolved and a pattern compilation cache is
introduced as the first client.
Depends On D123664
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D124007
The current implementation of takeBody first clears the Region, before then taking ownership of the blocks of the other regions. The issue here however, is that when clearing the region, it does not take into account references of operations to each other. In particular, blocks are deleted from front to back, and operations within a block are very likely to be deleted despite still having uses, causing an assertion to trigger [0].
This patch fixes that issue by simply calling dropAllReferences()before clearing the blocks.
[0] 9a8bb4bc63/mlir/lib/IR/Operation.cpp (L154)
Differential Revision: https://reviews.llvm.org/D123913
Add async dependencies support for gpu.launch op: this allows specifying
a list of async tokens ("streams") as dependencies for the launch.
Update the GPU kernel outlining pass lowering to propagate async
dependencies from gpu.launch to gpu.launch_func op. Previously, a new
stream was being created and destroyed for a kernel launch. The async
deps support allows the kernel launch to be serialized on an existing
stream.
Differential Revision: https://reviews.llvm.org/D123499
This patch handles empty hint value for critical and atomic constructs.
This also adds checks and tests for hint clause on atomic constructs.
Reviewed By: peixin, kiranchandramohan, NimishMishra
Differential Revision: https://reviews.llvm.org/D123186
Add a helper used to implement the build methods generated by ods-gen. The change reduces code size and compilation time since all structured op builders use the same build method. The change reduces the LinalgOps.cpp compilation time from 10.2s to 9.8s (debug build).
Depends On D123987
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D124003
The revision avoids template methods for parsing and printing that are replicated for every named operation. Instead, the new methods take a regionBuilder argument. The revision reduces the compile time of LinalgOps.cpp from 11.2 to 10.2 seconds (debug build).
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D123987
Add RegionBranchOpInterface on affine.for op so that transforms relying
on RegionBranchOpInterface can support affine.for. E.g.:
buffer-deallocation pass.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D123568
Writes into tensors that are definied outside of a repetitive region, but with the write happening inside of the repetitive region were previously not considered conflicts. This was incorrect.
E.g.:
```
%0 = ... : tensor<?xf32>
scf.for ... {
"reading_op"(%0) : tensor<?xf32>
%1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
...
}
```
In the above example, "writing_op" should be out-of-place.
This commit fixes the bufferization for any op that declares its repetitive semantics via RegionBranchOpInterface.
This patch adds check of supported reduction kind for ScanOp to avoid using and/or/xor for floating point type.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D123977
Introduce a method on PyMlirContext (and plumb it through to Python) to
invalidate all of the operations in the live operations map and clear
it. Since Python has no notion of private data, an end-developer could
reach into some 3rd party API which uses the MLIR Python API (that is
behaving correctly with regard to holding references) and grab a
reference to an MLIR Python Operation, preventing it from being
deconstructed out of the live operations map. This allows the API
developer to clear the map when it calls C++ code which could delete
operations, protecting itself from its users.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D123895
Sequence is an important transform combination primitive that just indicates
transform ops being applied in a row. The simplest version requires fails
immediately if any transformation in the sequence fails. Introducing this
operation allows one to start placing transform IR within other IR.
Depends On D123135
Reviewed By: Mogball, rriddle
Differential Revision: https://reviews.llvm.org/D123664
This patch adds a new function `mlirDenseElementsAttrBFloat16Get()`,
which accepts the shaped type, the number of BFloat16 values, and a
pointer to an array of BFloat16 values, each of which is a `uint16_t`
value.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D123981
The printer is now resilient to invalid IR and will already automatically
fallback to the generic form on invalid IR. Using the generic printer on
pass failure was a conservative option before the printer was made
failsafe.
Reviewed By: lattner, rriddle, jpienaar, bondhugula
Differential Revision: https://reviews.llvm.org/D123915
Fold away gpu.memcpy op when only uses of dest are
the memcpy op in question, its allocation and deallocation
ops.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D121279
This reverts commit af0285122f.
The test "libomp::loop_dispatch.c" on builder
openmp-gcc-x86_64-linux-debian fails from time-to-time.
See #54969. This patch is unrelated.
The OMPScheduleType enum stores the constants from libomp's internal sched_type in kmp.h and are used by several kmp API functions. The enum values have an internal structure, namely each scheduling algorithm (e.g.) exists in four variants: unordered, orderend, normerge unordered, and nomerge ordered.
This patch (basically a followup to D114940) splits the "ordered" and "nomerge" bits into separate flags, as was already done for the "monotonic" and "nonmonotonic", so we can apply bit flags operations on them. It also now contains all possible combinations according to kmp's sched_type. Deriving of the OMPScheduleType enum from clause parameters has been moved form MLIR's OpenMPToLLVMIRTranslation.cpp to OpenMPIRBuilder to make available for clang as well. Since the primary purpose of the flag is the binary interface to libomp, it has been made more private to LLVMFrontend. The primary interface for generating worksharing-loop using OpenMPIRBuilder code becomes `applyWorkshareLoop` which derives the OMPScheduleType automatically and calls the appropriate emitter function.
While this is mostly a NFC refactor, it still applies the following functional changes:
* The logic from OpenMPToLLVMIRTranslation to derive the OMPScheduleType also applies to clang. Most notably, it now applies the nonmonotonic flag for non-static schedules by default.
* In OpenMPToLLVMIRTranslation, the nonmonotonic default flag was previously not applied if the simd modifier was used. I assume this was a bug, since the effect was due to `loop.schedule_modifier()` returning `mlir::omp::ScheduleModifier::none` instead of `llvm::Optional::None`.
* In OpenMPToLLVMIRTranslation, the nonmonotonic default flag was set even if ordered was specified, in breach to what the comment before citing the OpenMP specification says. I assume this was an oversight.
The ordered flag with parameter was not considered in this patch. Changes will need to be made (e.g. adding/modifying function parameters) when support for it is added. The lengthy names of the enum values can be discussed, for the moment this is avoiding reusing previously existing enum value names such as `StaticChunked` to avoid confusion.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D123403
Reproducers that resulted in triggering the following asserts
mlir::NamedAttribute::NamedAttribute(mlir::StringAttr, mlir::Attribute)
mlir/lib/IR/Attributes.cpp:29:3
consumeToken
mlir/lib/Parser/Parser.h:126
Differential Revision: https://reviews.llvm.org/D122240
This revision folds transpose splat to a new splat with the transposed vector type. For a splat, there is no need to actually do transpose for it, it would be more effective to just build a new splat as the result.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D123765
The generic form of the op is too verbose and in some cases not
readable. On pass failure, ops have been so far printed in generic form
to provide a (stronger) guarantee that the IR print succeeds. However,
in a large number of pass failure cases, the IR is still valid and
the custom printers for the ops will succeed. In fact, readability is
highly desirable post pass failure. This revision provides an option to
print ops in their custom/pretty-printed form on IR failure -- this
option is unsafe and there is no guarantee it will succeed. It's
disabled by default and can be turned on only if needed.
Differential Revision: https://reviews.llvm.org/D123893
This patch takes advantage of the Commutative trait on operation
to remove identical commutative operations where the operands are swapped.
The second operation below can be removed since `arith.addi` is commutative.
```
%1 = arith.addi %a, %b : i32
%2 = arith.addi %b, %a : i32
```
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D123492
This helps to prevent tsan failures when users inadvertantly mutate the
context in a non-safe way.
Differential Revision: https://reviews.llvm.org/D112021
extract was incorrectly folded when the source was coming from a
broadcast that was both adding new rank and broadcasting the inner
dimension.
Differential Revision: https://reviews.llvm.org/D123867
Changes the algorithm of LICM to support graph regions (no guarantee of topologically sorted order). Also fixes an issue where ops with recursive side effects and regions would not be hoisted if any nested ops used operands that were defined within the nested region.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D122465
Operation clone is currently faulty.
Suppose you have a block like as follows:
```
(%x0 : i32) {
%x1 = f(%x0)
return %x1
}
```
The test case we have is that we want to "unroll" this, in which we want to change this to compute `f(f(x0))` instead of just `f(x0)`. We do so by making a copy of the body at the end of the block and set the uses of the argument in the copy operations with the value returned from the original block.
This is implemented as follows:
1) map to the block arguments to the returned value (`map[x0] = x1`).
2) clone the body
Now for this small example, this works as intended and we get the following.
```
(%x0 : i32) {
%x1 = f(%x0)
%x2 = f(%x1)
return %x2
}
```
This is because the current logic to clone `x1 = f(x0)` first looks up the arguments in the map (which finds `x0` maps to `x1` from the initialization), and then sets the map of the result to the cloned result (`map[x1] = x2`).
However, this fails if `x0` is not an argument to the op, but instead used inside the region, like below.
```
(%x0 : i32) {
%x1 = f() {
yield %x0
}
return %x1
}
```
This is because cloning an op currently first looks up the args (none), sets the map of the result (`map[%x1] = %x2`), and then clones the regions. This results in the following, which is clearly illegal:
```
(%x0 : i32) {
%x1 = f() {
yield %x0
}
%x2 = f() {
yield %x2
}
return %x2
}
```
Diving deeper, this is partially due to the ordering (how this PR fixes it), as well as how region cloning works. Namely it will first clone with the mapping, and then it will remap all operands. Since the ordering above now has a map of `x0 -> x1` and `x1 -> x2`, we end up with the incorrect behavior here.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D122531
This diff moves `EnumAttr` tablegen definitions (specifically, `IntEnumAttr` and
`BitEnumAttr`-related classes) from `OpBase.td` to `EnumAttr.td`. No
functionality is changed.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D123551
LLVM IR is moving towards adoption of opaque pointer types. These require extra
information to be passed when constructing some operations, in particular GEP
and Alloca. Adapt the builders of said operations and modify the translation
code to handle both opaque and non-opaque pointers.
This incidentally adds the translation for Alloca alignment and fixes the translation
of struct-related GEP indices that must be constant.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D123792
Similar to the existing pattern for reodering cast(transpose),
this makes transpose following transpose and increases the chance
of embedding the transposition inside contraction op. Actually
cast ops are just special instances of elementwise ops.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D123596
In order to increase parallism, certain ops with regions and have the
IsIsolatedFromAbove trait will have their verification delayed. That
means the region verifier may access the invalid ops and may lead to a
crash.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D122771
Copy the implementation of SparseCompiler from python/tools to taco/tools until we have a common place to install it. Modify TACO to use this SparseCompiler for compilation and jitting.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D123696
This dialect provides operations that can be used to control transformation of
the IR using a different portion of the IR. It refers to the IR being
transformed as payload IR, and to the IR guiding the transformation as
transform IR.
The main use case for this dialect is orchestrating fine-grain transformations
on individual operations or sets thereof. For example, it may involve finding
loop-like operations with specific properties (e.g., large size) in the payload
IR, applying loop tiling to those and only those operations, and then applying
loop unrolling to the inner loops produced by the previous transformations. As
such, it is not intended as a replacement for the pass infrastructure, nor for
the pattern rewriting infrastructure. In the most common case, the transform IR
will be processed and applied to payload IR by a pass. Transformations
expressed by the transform dialect may be implemented using the pattern
infrastructure or any other relevant MLIR component.
This dialect is designed to be extensible, that is, clients of this dialect are
allowed to inject additional operations into this dialect using the newly
introduced in this patch `TransformDialectExtension` mechanism. This allows the
dialect to avoid a dependency on the implementation of the transformation as
well as to avoid introducing dialect-specific transform dialects.
See https://discourse.llvm.org/t/rfc-interfaces-and-dialects-for-precise-ir-transformation-control/60927.
Reviewed By: nicolasvasilache, Mogball, rriddle
Differential Revision: https://reviews.llvm.org/D123135
LLVM IR has introduced and is moving forward with the concept of opaque
pointers, i.e. pointer types that are not carrying around the pointee type.
Instead, memory-related operations indicate the type of the data being accessed
through the opaque pointer. Introduce the initial support for opaque pointers
in the LLVM dialect:
- `LLVMPointerType` to support omitting the element type;
- alloca/load/store/gep to support opaque pointers in their operands and
results; this requires alloca and gep to store the element type as an
attribute;
- memory-related intrinsics to support opaque pointers in their operands;
- translation to LLVM IR for the ops above is no longer using methods
deprecated in LLVM API due to the introduction of opaque pointers.
Unlike LLVM IR, MLIR can afford to support both opaque and non-opaque pointers
at the same time and simplify the transition. Translation to LLVM IR of MLIR
that involves opaque pointers requires the LLVMContext to be configured to
always use opaque pointers.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D123310
This change adds three new operations to the GPU dialect: gpu.mma.sync,
gpu.mma.ldmatrix, and gpu.lane_id. The former two are meant to target
the lower level nvvm.mma.sync and nvvm.ldmatrix instructions, respectively.
Lowerings are added for the new GPU operations for conversion to
NVVM.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D123647
Support unrolling for vector.transpose following the same interface as
other vector unrolling ops.
Differential Revision: https://reviews.llvm.org/D123688
StrEnumAttr has been deprecated in favour of EnumAttr, a solution based on AttrDef (https://reviews.llvm.org/D115181). This patch removes StrEnumAttr, along with all the custom ODS logic required to handle it.
See https://discourse.llvm.org/t/psa-stop-using-strenumattr-do-use-enumattr/5710 on how to transition to EnumAttr. In short,
```
// Before
def MyEnumAttr : StrEnumAttr<"MyEnum", "", [
StrEnumAttrCase<"A">,
StrEnumAttrCase<"B">
]>;
// After (pick an integer enum of your choice)
def MyEnum : I32EnumAttr<"MyEnum", "", [
I32EnumAttrCase<"A", 0>,
I32EnumAttrCase<"B", 1>
]> {
// Don't generate a C++ class! We want to use the AttrDef
let genSpecializedAttr = 0;
}
// Define the AttrDef
def MyEnum : EnumAttr<MyDialect, MyEnum, "my_enum">;
```
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D120834
This patch adds thread_local to llvm.mlir.global and adds translation for dso_local and addr_space to and from LLVM IR.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D123412
This revision replaces current type cast constant folder with a new common type cast constant folder function template.
It will cover all former folder and support fold the constant splat and vector.
Differential Revision: https://reviews.llvm.org/D123489
This change generalizes the fusion of `tensor.expand_shape` ->
`linalg.generic` op by collapsing to handle cases where only a subset
of the reassociations specified in the `tensor.expand_shape` are valid
to be collapsed.
The method that does the collapsing is refactored to allow it to be a
generic utility when required.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D123153
This patch adds tasking construct according to Section 2.10.1 of OpenMP 5.0
Reviewed By: peixin, kiranchandramohan, abidmalikwaterloo
Differential Revision: https://reviews.llvm.org/D123575
With this change, there's going to be a clear distinction between LLVM
and MLIR pass maanger options (e.g. `-mlir-print-after-all` vs
`-print-after-all`). This change is desirable from the point of view of
projects that depend on both LLVM and MLIR, e.g. Flang.
For consistency, all pass manager options in MLIR are prefixed with
`mlir-`, even options that don't have equivalents in LLVM .
Differential Revision: https://reviews.llvm.org/D123495
This supports the threadprivate directive in OpenMP dialect following
the OpenMP 5.1 [2.21.2] standard. Also lowering to LLVM IR using OpenMP
IRBduiler.
Reviewed By: kiranchandramohan, shraiysh, arnamoy10
Differential Revision: https://reviews.llvm.org/D123350
Use the new pass manager.
This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.
No need to initialize passes outside of constructing the PassBuilder with the new pass manager.
Reland: Fixed custom calls to `-lower-matrix-intrinsics` in integration tests by replacing them with `-O0 -enable-matrix`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123425
The method to add elementwise ops fusion patterns pulls in many other
patterns by default. The patterns to pull in along with the
elementwise op fusion should be upto the caller. Split the method to
pull in just the elementwise ops fusion pattern. Other cleanup changes
include
- Move the pattern for constant folding of generic ops (currently only
constant folds transpose) into a separate file, cause it is not
related to fusion
- Drop the uber LinalgElementwiseFusionOptions. With the
populateElementwiseOpsFusionPatterns being split, this has no
utility now.
- Drop defaults for the control function.
- Fusion of splat constants with generic ops doesnt need a control
function. It is always good to do.
Differential Revision: https://reviews.llvm.org/D123236
This patch contains several ODS-level optimizations to attribute getters and getting.
1. OpAdaptors, when provided a DictionaryAttr, will instantiate an OperationName so that adaptor attribute getters can used cached identifiers.
2. Verifiers will take advantage of attributes stored in sorted order to get all required (non-optional, non-default valued, and non-derived) attributes in one pass over the attribute dictionary and verify that they are present.
3. ODS-generated attribute getters will use "subrange" lookup. Because the attributes are stored in sorted order and ODS knows which attributes are required, the number of required attributes less than and greater than each attribute can be computed. When searching for an attribute, the ends of the search range can be dropped.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D122430
Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is overwritten and inserted into another tensor. After this rewrite, the operations bufferize in-place since all of them work on the same %iter_arg slice.
For example:
```mlir
%0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
: vector<8x16xf32>, tensor<8x16xf32>
%1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
: tensor<8x16xf32> to tensor<?x?xf32>
%r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
: tensor<?x?xf32> into tensor<27x37xf32>
```
folds to
```mlir
%0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
: tensor<27x37xf32> to tensor<?x?xf32>
%1 = vector.transfer_write %vec, %0[%c0, %c0]
: vector<8x16xf32>, tensor<?x?xf32>
%r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
: tensor<?x?xf32> into tensor<27x37xf32>
Reviewed By: nicolasvasilache, hanchung
Differential Revision: https://reviews.llvm.org/D123190
Insert a buffer copy unless the dims are guaranteed to be collapsible. In the verifier, accept collapses unless they are guaranteed to be non-collapsible.
Differential Revision: https://reviews.llvm.org/D123316
Insert a cast if the two tensors with identical layout (that are passed to `arith.select`) have different layout maps after bufferization.
Differential Revision: https://reviews.llvm.org/D123321
This patch revamps the BranchOpInterface a bit and allows a proper implementation of what was previously `getMutableSuccessorOperands` for operations, which internally produce arguments to some of the block arguments. A motivating example for this would be an invoke op with a error handling path:
```
invoke %function(%0)
label ^success ^error(%1 : i32)
^error(%e: !error, %arg0 : i32):
...
```
The advantages of this are that any users of `BranchOpInterface` can still argue over remaining block argument operands (such as `%1` in the example above), as well as make use of the modifying capabilities to add more operands, erase an operand etc.
The way this patch implements that functionality is via a new class called `SuccessorOperands`, which is now returned by `getSuccessorOperands`. It basically contains an `unsigned` denoting how many operator produced operands exist, as well as a `MutableOperandRange`, which are the usual forwarded operands we are used to. The produced operands are assumed to the first few block arguments, followed by the forwarded operands afterwards. The role of `SuccessorOperands` is to provide various utility functions to modify and query the successor arguments from a `BranchOpInterface`.
Differential Revision: https://reviews.llvm.org/D123062
Reland Note: Adds a fix to properly mark a commutative operation as folded if we change the order
of its operands. This was uncovered by the fact that we no longer re-process constants.
This avoids accidentally reversing the order of constants during successive
application, e.g. when running the canonicalizer. This helps reduce the number
of iterations, and also avoids unnecessary changes to input IR.
Fixes#51892
Differential Revision: https://reviews.llvm.org/D122692
In addition, fixed a small bug with padding incorrectly inferring output shape for dynaic inputs in convolution
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D121872
This case is handled in neither the folding or canonicalization
patterns. The folding pattern cannot generate new broadcast ops,
so it should be handled by the canonicalization pattern.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D123307
This patch enhances the CSE pass to deal with simple cases of duplicated
operations with MemoryEffects.
It allows the CSE pass to remove safely duplicate operations with the
MemoryEffects::Read that have no other side-effecting operations in
between. Other MemoryEffects::Read operation are allowed.
The use case is pretty simple so far so we can build on top of it to add
more features.
This patch is also meant to avoid a dedicated CSE pass in FIR and was
brought together afetr discussion on https://reviews.llvm.org/D112711.
It does not currently cover the full range of use cases described in
https://reviews.llvm.org/D112711 but the idea is to gradually enhance
the MLIR CSE pass to handle common use cases that can be used by
other dialects.
This patch takes advantage of the new CSE capabilities in Fir.
Reviewed By: mehdi_amini, rriddle, schweitz
Differential Revision: https://reviews.llvm.org/D122801
This commit refactors the expected form of native constraint and rewrite
functions, and greatly reduces the necessary user complexity required when
defining a native function. Namely, this commit adds in automatic processing
of the necessary PDLValue glue code, and allows for users to define
constraint/rewrite functions using the C++ types that they actually want to
use.
As an example, lets see a simple example rewrite defined today:
```
static void rewriteFn(PatternRewriter &rewriter, PDLResultList &results,
ArrayRef<PDLValue> args) {
ValueRange operandValues = args[0].cast<ValueRange>();
TypeRange typeValues = args[1].cast<TypeRange>();
...
// Create an operation at some point and pass it back to PDL.
Operation *op = rewriter.create<SomeOp>(...);
results.push_back(op);
}
```
After this commit, that same rewrite could be defined as:
```
static Operation *rewriteFn(PatternRewriter &rewriter ValueRange operandValues,
TypeRange typeValues) {
...
// Create an operation at some point and pass it back to PDL.
return rewriter.create<SomeOp>(...);
}
```
Differential Revision: https://reviews.llvm.org/D122086
Rationale:
Allocating the temporary buffers for access pattern expansion on the stack
(using alloca) is a bit too agressive, since it easily runs out of stack space
for large enveloping tensor dimensions. This revision changes the dynamic
allocation of these buffers with explicit alloc/dealloc pairs.
Reviewed By: bixia, wrengr
Differential Revision: https://reviews.llvm.org/D123253
Adds `mlirBlockDetach` to the CAPI to remove a block from its parent
region. Use it in the Python bindings to implement
`Block.append_to(region)`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123165
Support returning arbitrary tensors from functions. Even those that are
not equivalent. To that end, additional information is gathered during
the analysis phase. In particular, which function args are aliasing with
which return values.
Also fix bugs in the current implementation when returning equivalent
tensors. Various unit tests are added to ensure that we have better test
coverage.
Note: Returning non-equivalent tensors is only allowed when
allowReturnAllocs is enabled. This functionality is useful for unit
testing and compatibility with other bufferizations such as the sparse
compiler. This is also towards using ModuleBufferization as a
replacement for --func-bufferize.
Differential Revision: https://reviews.llvm.org/D119120
* Bufferize FuncOp bodies and boundaries in the same loop. This is in preparation of moving FuncOp bufferization into an external model implementation.
* As a side effect, stop bufferization earlier if there was an error. (Do not continue bufferization, fewer error messages.)
* Run equivalence analysis of CallOps before the main analysis. This is needed so that equialvence info is propagated properly.
Differential Revision: https://reviews.llvm.org/D123208
https://reviews.llvm.org/D122641 introduced fixes to the ExpandShapeOp verifier
but also introduced an artificial layout limitation that prevents the consideration of transposed layouts.
This revision fixes the omissions and reimplements the logic using saturated arithmetic which is more
idiomatic and avoids leaking internal implementation details.
Tests cases are added for transposed layouts.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D122845
Originally in the returnOp conversion, the result type was changing to bare
pointer if the type was a memref. This is incorrect as conversion to bare
pointer can only be done if the memref has static shape, strides and offset.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D123121
Add the description textual field to the Attr ODS class to mirror an
identical field in the Type ODS class. Add support for generating
documentation for attribute constraints defined using this field. This
ensures mlir-tblgen produces at least some documentation for dialects
that only define attribute constraints, such as DLTI.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D123024
This commit restructures how TypeID is implemented to ideally avoid
the current problems related to shared libraries. This is done by changing
the "implicit" fallback path to use the name of the type, instead of using
a static template variable (which breaks shared libraries). The major downside to this
is that it adds some additional initialization costs for the implicit path. Given the
use of type names for uniqueness in the fallback, we also no longer allow types
defined in anonymous namespaces to have an implicit TypeID. To simplify defining
an ID for these classes, a new `MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID` macro
was added to allow for explicitly defining a TypeID directly on an internal class.
To help identify when types are using the fallback, `-debug-only=typeid` can be
used to log which types are using implicit ids.
This change generally only requires changes to the test passes, which are all defined
in anonymous namespaces, and thus can't use the fallback any longer.
Differential Revision: https://reviews.llvm.org/D122775
Apply scale should be optionally disabled when lowering via TosaToStandard.
In most cases it should persist until the lowering to specific backend.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D122948
Adds the ability to create external passes using the C-API. This allows passes
to be written in C or languages that use the C-bindings.
Differential Revision: https://reviews.llvm.org/D121866
This significantly simplifies the boilerplate necessary for passes
to define nested pass pipelines.
Differential Revision: https://reviews.llvm.org/D122880
ListOption currently uses llvm:🆑:list under the hood, but the usages
of ListOption are generally a tad different from llvm:🆑:list. This
commit codifies this by making ListOption implicitly comma separated,
and removes the explicit flag set for all of the current list options.
The new parsing for comma separation of ListOption also adds in support
for skipping over delimited sub-ranges (i.e. {}, [], (), "", ''). This
more easily supports nested options that use those as part of the
format, and this constraint (balanced delimiters) is already codified
in the syntax of pass pipelines.
See https://discourse.llvm.org/t/list-of-lists-pass-option/5950 for
related discussion
Differential Revision: https://reviews.llvm.org/D122879
Prior to this change there were a number of places where the allocation and deallocation of SparseTensorCOO objects were not cleanly paired, leading to inconsistencies regarding whether each function released its tensor/coo arguments or not, as well as making it easy to run afoul of memory leaks, use-after-free, or double-free errors. This change cleans up the codegen vs runtime boundary to resolve those issues. Now, the only time the runtime library frees an object is either (a) because it's a function explicitly designed to do so, or (b) because the allocated object is entirely local to the function and would be a memory leak if not released. Thus, now the codegen takes complete responsibility for releasing any objects it caused to be allocated.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D122435
This patch supports ordered clause specified without parameter in
worksharing-loop directive in the OpenMPIRBuilder and lowering MLIR to
LLVM IR.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D114940
This shows that pushing constant to the right in a commutative op leads
to `applyPatternsAndFoldGreedily` to converge without applying all the
patterns.
Differential Revision: https://reviews.llvm.org/D122870
This reverts commit 59bbc7a085.
This exposes an issue breaking the contract of
`applyPatternsAndFoldGreedily` where we "converge" without applying
remaining patterns.
This avoids accidentally reversing the order of constants during successive
application, e.g. when running the canonicalizer. This helps reduce the number
of iterations, and also avoids unnecessary changes to input IR.
Fixes#51892
Differential Revision: https://reviews.llvm.org/D122692
Bubble up extract_slice above Linalg operation.
A sequence of operations
%0 = linalg.<op> ... arg0, arg1, ...
%1 = tensor.extract_slice %0 ...
can be replaced with
%0 = tensor.extract_slice %arg0
%1 = tensor.extract_slice %arg1
%2 = linalg.<op> ... %0, %1, ...
This results in the reduce computation of the linalg operation.
The implementation uses the tiling utility functions. One difference
from the tiling process is that we don't need to insert the checking
code for the out-of-bound accesses. The use of the slice itself
represents that the code writer is sure about the boundary condition.
To avoid adding the boundary condtion check code, `omitPartialTileCheck`
is introduced for the tiling utility functions.
Differential Revision: https://reviews.llvm.org/D122437
Infer a tighter MemRef type instead of always falling back to the most dynamic MemRef type. This is inefficient and caused op verification errors.
Differential Revision: https://reviews.llvm.org/D122649
* Complete rewrite of the verifier.
* CollapseShapeOp verifier will be updated in a subsequent commit.
* Update and expand op documentation.
* Add a new builder that infers the result type based on the source type, result shape and reassociation indices. In essence, only the result layout map is inferred.
Differential Revision: https://reviews.llvm.org/D122641
For example, we could do the following eliminations:
fold vector.shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
fold vector.shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
Differential Revision: https://reviews.llvm.org/D122706
linalg.generic can also take scalars instead of tensors, which
tensor.cast doesn't support. We don't have an easy way to cast between
scalars and tensors so just keep the linalg.generic in those cases.
Differential Revision: https://reviews.llvm.org/D122575
We are using "enable-index-optimizations" and "indexOptimizations" as
names for an optimization that consists of using i32 for indices within
a vector. For instance, when building a vector comparison for mask
generation. The name is confusing and suggests a scope beyond these
vector indices. This change makes the function of the option explicit
in its name.
Differential Revision: https://reviews.llvm.org/D122415
A Block is optionally allocated & leaks in case of failed parse. Inline the
function and ensure Block gets freed unless parse is successful.
Differential Revision: https://reviews.llvm.org/D122112
(This was a TODO from the initial patch).
The control-flow sink utility accepts a callback that is used to sink an operation into a region.
The `moveIntoRegion` is called on the same operation and region that return true for `shouldMoveIntoRegion`.
The callback must preserve the dominance of the operation within the region. In the default control-flow
sink implementation, this is moving the operation to the start of the entry block.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D122445
This has been on _Both for a couple of weeks. Flip usages in core with
intention to flip flag to _Prefixed in follow up. Needed to add a couple
of helper methods in AffineOps and Linalg to facilitate a pure flag flip
in follow up as some of these classes are used in templates and so
sensitive to Vector dialect changes.
Differential Revision: https://reviews.llvm.org/D122151
- Adds default implementations of `isDefinedOutsideOfLoop` and `moveOutOfLoop` since 99% of all implementations of these functions were identical
- `moveOutOfLoop` takes one operation and doesn't return anything anymore. 100% of all implementations of this function would always return `success` and uses would either respond with a pass failure or an `llvm_unreachable`.
This revision supports padding only a subset of the iteration dimensions via an additional padding-dimensions parameter. This control allows us to pad an operation in multiple steps. For example, one may want to pad only the output dimensions of a producer matmul fused into a consumer loop nest, before tiling and padding its reduction dimension.
Depends On D122309
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D122560
Pass the padding options using arrays instead of lambdas. In particular pass the padding value as string and use the argument parser to create the padding value. Arrays are a more natural choice that matches the current use cases and avoids converting arrays to lambdas.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D122309
This patch adds the ReductionClauseInterface and also adds reduction
support for `omp.parallel` operation.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D122402
This patch adds MLIR NVVM support for the various NVPTX `mma.sync`
operations. There are a number of possible data type, shape,
and other attribute combinations supported by the operation, so a
custom assebmly format is added and attributes are inferred where
possible.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D122410
In order to run these integration tests, it is required access to an
SVE-enabled CPU or and emulator with SVE support. In case of using
an emulator, aarch64 versions of lli and the MLIR C Runner Utils Library
are also required.
Differential Revision: https://reviews.llvm.org/D104517
Use "enable-vla-vectorization=vla" to generate a vector length agnostic
loops during vectorization. This option works for vectorization strategy 2.
Differential Revision: https://reviews.llvm.org/D118379
The way vector.create_mask is currently lowered is
vector-length-dependent, and therefore incompatible with scalable vector
types. This patch adds an alternative lowering path for create_mask
operations that return a scalable vector mask.
Differential Revision: https://reviews.llvm.org/D118248
This transformation allow to break up a reduction dimension in a
parallel and a reduction dimension. This is followed by a separate
reduction op. This allows to generate tree reduction which is beneficial
on target allowing to take advantage parallelism.
Differential Revision: https://reviews.llvm.org/D122045
This patch adds the nowait parameter to `createSingle` in
OpenMPIRBuilder and handling for IR generation from OpenMP Dialect.
Also added tests for the same.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D122371
Previously, only LinalgOps whose operands are defined by an ExtractSliceOp could be padded. The revision supports walking a use-def chain of LinalgOps to find an ExtractSliceOp.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D122116
This revision introduces a heuristic to stop fusion for shape-only tensors. A shape-only tensor only defines the shape of the consumer computation while the data is not used. Pure producer consumer fusion thus shall not fuse the producer of a shape-only tensor. In particular, since the shape-only tensor will have other uses that actually consume the data.
The revision enables fusion for consumers that have two uses of the same tensor. One as input operand and one as shape-only output operand. In these cases, we want to fuse only the input operand and avoid output fusion via iteration argument.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D120981
Create the AffineMinOp used to compute the padding width in canonical form and update the tests.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D122311
These attributes were added because of oilist required them earlier. It
no longer requires them and so these attributes can be safely removed
from the operations.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D122289
This patch adds translation from omp.single to LLVM IR.
Depends on D122288
Reviewed By: ftynse, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D122297
This provides a way to create an operation without manipulating
OperationState directly. This is useful for creating unregistered ops.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D120787
Emitting at error at EOF will emit the diagnostic past the end of the file. When emitting an error during parsing at EOF, emit it at the previous character.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D122295
This patch adds omp.single according to Section 2.8.2 of OpenMP 5.0.
Also added tests for the same.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D122288
Co-authored-by: Kiran Kumar T P <kirankumar.tp@amd.com>
This patch
- adds assembly format for `omp.wsloop` operation
- removes the `parseClauses` clauses as it is not required anymore
This is expected to be the final patch in a series of patches for replacing
parsers for clauses with `oilist`.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D121367
Make MaxSI, MaxUI, MinSI and MinUI commutative, so they will be canonicalized to have its constants appear as the second operand. And the constant folder will match more cases.
Differential Revision: https://reviews.llvm.org/D122225