Summary:
The main change is that we can have SECREL and SECTION relocations
against ___safe_se_handler_table, which is important for handling the
debug info in the MSVCRT.
Previously we were using DefinedRelative for __safe_se_handler_table and
__ImageBase, and after we implement CFGuard, we plan to extend it to
handle __guard_fids_table, __guard_longjmp_table, and more. However,
DefinedRelative is really only suitable for implementing __ImageBase,
because it lacks a Chunk, which you need in order to figure out the
output section index and output section offset when resolving SECREl and
SECTION relocations.
This change renames DefinedRelative to DefinedSynthetic and gives it a
Chunk. One wart is that __ImageBase doesn't have a chunk. It points to
the PE header, effectively. We could split DefinedRelative and
DefinedSynthetic if we think that's cleaner and creates fewer special
cases.
I also added safeseh.s, which checks that we don't emit a safe seh table
entries pointing to garbage collected handlers and that we don't emit a
table at all when there are no handlers.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: inglorion, pcc, llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D34577
llvm-svn: 306293
Summary:
Adds a "Discarded" bool to SectionChunk to indicate if the section was
discarded by COMDAT deduplication. The Writer still just checks
`isLive()`.
Fixes PR33446
Reviewers: ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34288
llvm-svn: 305582
Summary:
This adds support for reporting multiple errors in a single invocation of lld-link. The limit defaults to 20 and can be changed with the /ERRORLIMIT command line parameter, or set to unlimited by passing a value of 0.
This is a new attempt after r295507, which was reverted because opening files raced with exiting early, causing the test to be flaky. This version avoids the race by exiting before calling enqueuePath.
Reviewers: pcc, ruiu
Reviewed By: ruiu
Subscribers: llvm-commits, dblaikie
Differential Revision: https://reviews.llvm.org/D31688
llvm-svn: 299496
LLD is a multi-threaded program. errs() or outs() are not guaranteed
to be thread-safe (they are actually not).
LLD's message(), log() or error() are thread-safe. We should use them.
llvm-svn: 295787
Behavior races on ErrorCount. If the enqueued paths are evaluated
eagerly (in enqueuePath) then the behavior is as the test expects. But
they may not be evaluated until the future is waited on, in run() -
which is after the early return/exit on ErrorCount. (this causes the
test to fail (because in the "/ERRORCOUNT:XYZ" test, no other errors
are printed), at least for me, on linux)
This reverts commit r295507.
llvm-svn: 295590
Summary: This adds support for reporting multiple errors in a single invocation of lld-link. The limit defaults to 20 and can be changed with the /ERRORLIMIT command line parameter, or set to unlimited by passing a value of 0.
Reviewers: pcc, ruiu
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D29691
llvm-svn: 295507
This patch defines a new command line option, /MSVCLTO, to LLD.
If that option is given, LLD invokes link.exe to link LTO-generated
object files. This is hacky but useful because link.exe can create
PDB files.
Differential Revision: https://reviews.llvm.org/D29526
llvm-svn: 294234
Summary: The COFF linker previously implemented link-time optimization using an API which has now been marked as legacy. This change refactors the COFF linker to use the new LTO API, which is also used by the ELF linker.
Reviewers: pcc, ruiu
Reviewed By: pcc
Subscribers: mgorny, mehdi_amini
Differential Revision: https://reviews.llvm.org/D29059
llvm-svn: 293967
I thought for a while about how to remove it, but it looks like we
can just copy the file for now. Of course I'm not happy about that,
but it's just less than 50 lines of code, and we already have
duplicate code in Error.h and some other places. I want to solve
them all at once later.
Differential Revision: https://reviews.llvm.org/D27819
llvm-svn: 290062
Profiling revealed that the majority of lld's execution time on Windows was
spent opening and mapping input files. We can reduce this cost significantly
by performing these operations asynchronously.
This change introduces a queue for all operations on input file data. When
we discover that we need to load a file (for example, when we find a lazy
archive for an undefined symbol, or when we read a linker directive to
load a file from disk), the file operation is launched using a future and
the symbol resolution operation is enqueued. This implies another change
to symbol resolution semantics, but it seems to be harmless ("ninja All"
in Chromium still succeeds).
To measure the perf impact of this change I linked Chromium's chrome_child.dll
with both thin and fat archives.
Thin archives:
Before (median of 5 runs): 19.50s
After: 10.93s
Fat archives:
Before: 12.00s
After: 9.90s
On Linux I found that doing this asynchronously had a negative effect on
performance, probably because the cost of mapping a file is small enough that
it becomes outweighed by the cost of managing the futures. So on non-Windows
platforms I use the deferred execution strategy.
Differential Revision: https://reviews.llvm.org/D27768
llvm-svn: 289760
This patch replaces the symbol table's object and archive queues, as well as
the convergent loop in the linker driver, with a design more similar to the
ELF linker where symbol resolution directly causes input files to be added to
the link, including input files arising from linker directives. Effectively
this removes the last vestiges of the old parallel input file loader.
Differential Revision: https://reviews.llvm.org/D27660
llvm-svn: 289409
This ports the ELF linker's symbol table design, introduced in r268178,
to the COFF linker.
Differential Revision: http://reviews.llvm.org/D21166
llvm-svn: 289280
Previously, we had different way to stringize SymbolBody and InputFile
to construct error messages. This patch defines overloaded function
toString() so that we don't need to memorize all these different
function names.
With that change, it is now easy to include demangled names in error
messages. Now, if there is a symbol name conflict, we'll print out
both mangled and demangled names.
llvm-svn: 288992
Following the lazy reference might bring in an object file that depends
on bitcode files that weren't part of the LTO step.
Differential Revision: https://reviews.llvm.org/D25461
llvm-svn: 283989
Previously, InputFile::parse() was run in batch. We construct a list
of all input files and call parse() on each file using parallel_for_each.
That means we cannot start parsing files until we get a complete list
of input files, although InputFile::parse() is safe to call from anywhere.
This patch makes it asynchronous. As soon as we add a file to the symbol
table, we now start parsing the file using std::async().
This change shortens self-hosting time (650 ms) by 28 ms. It's about 4%
improvement.
llvm-svn: 248109
I made the field an atomic pointer in hope that we would be able to
parallelize the symbol resolver soon, but that's not going to happen
soon. This patch reverts that change for the sake of readability.
llvm-svn: 248104
InputFile::parse() can be called in parallel with other calls of
the same function. By doing that, time to self-link improves from
741 ms to 654 ms or 12% faster.
This is probably the last low hanging fruit in terms of parallelism.
Input file parsing and symbol table insertion takes 450 ms in total.
If we want to optimize further, we probably have to parallelize
symbol table insertion using concurrent hashmap or something.
That's doable, but that's not easy, especially if you want to keep
the exact same semantics and linking order. I'm not going to do that
at least soon.
Anyway, compared to r248019 (the change before the first attempt for
parallelism), we achieved 36% performance improvement from 1022 ms
to 654 ms. MSVC linker takes 3.3 seconds to link the same program.
MSVC's ICF feature is very slow for some reason, but even if we
disable the feature, it still takes about 1.2 seconds.
Our number is probably good enough.
llvm-svn: 248078
Basically the concept of "liveness" is for sections (or chunks in LLD
terminology) and not for symbols. Symbols are always available or live,
or otherwise it indicates a link failure.
Previously, we had isLive() and markLive() methods for DefinedSymbol.
They are confusing methods. What they actually did is to act as a proxy
to backing section chunks. We can simplify eliminate these methods
and call section chunk's methods directly.
llvm-svn: 247869
This is exposed via a new flag /opt:lldltojobs=N, where N is the number of
code generation threads.
Differential Revision: http://reviews.llvm.org/D12309
llvm-svn: 246342
This has a few advantages
* Less C++ code (about 300 lines less).
* Less machine code (about 14 KB of text on a linux x86_64 build).
* It is more debugger friendly. Just set a breakpoint on the exit function and
you get the complete lld stack trace of when the error was found.
* It is a more robust API. The errors are handled early and we don't get a
std::error_code hot potato being passed around.
* In most cases the error function in a better position to print diagnostics
(it has more context).
llvm-svn: 244215
In many places we assumed that is64() means AMD64 and i386 otherwise.
This assumption is not sound because Windows also supports ARM.
The linker doesn't support ARM yet, but this is a first step.
llvm-svn: 243188
An object file compatible with Safe SEH contains a .sxdata section.
The section contains a list of symbol table indices, each of which
is an exception handler function. A safe SEH-enabled executable
contains a list of exception handler RVAs. So, what the linker has
to do to support Safe SEH is basically to read the .sxdata section,
interpret the contents as a list of symbol indices, unique-fy and
sort their RVAs, and then emit that list to .rdata. This patch
implements that feature.
llvm-svn: 243182
__ImageBase is a special symbol whose value is the image base address.
Previously, we handled __ImageBase symbol as an absolute symbol.
Absolute symbols point to specific locations in memory and the locations
never change even if an image is base-relocated. That means that we
don't have base relocation entries for absolute symbols.
This is not a case for __ImageBase. If an image is base-relocated, its
base address changes, and __ImageBase needs to be shifted as well.
So we have to have base relocations for __ImageBase. That means that
__ImageBase is not really an absolute symbol but a different kind of
symbol.
In this patch, I introduced a new type of symbol -- DefinedRelative.
DefinedRelative is similar to DefinedAbsolute, but it has not a VA but RVA
and is a subject of base relocation. Currently only __ImageBase is of
the new symbol type.
llvm-svn: 243176
Entry name selection rule is already complicated on x64, but it's more
complicated on x86 because of the underscore name mangling scheme.
If one of _main, _main@<number> (a C function) or ?main@@... (a C++ function)
is defined, entry name is _mainCRTStartup. If _wmain, _wmain@<number or
?wmain@@... is defined, entry name is _wmainCRTStartup. And so on.
llvm-svn: 242110
Symbol foo is mangled as _foo in C and ?foo@@... in C++ on x86.
findMangle has to remove prefix underscore before mangle a given name
as a C++ symbol.
llvm-svn: 241874
Previously we were unnecessarily loading lazy symbols if they appeared in an
archive multiple times, as can happen with comdat symbols. This change fixes
the bug by only loading symbols from archives at load time if the original
symbol was undefined.
Differential Revision: http://reviews.llvm.org/D10980
llvm-svn: 241538
In the new design, mutation of Symbol pointers is the name resolution
operation. This patch makes them atomic pointers so that they can
be mutated by multiple threads safely. I'm going to use atomic
compare-exchange on these pointers.
dyn_cast<> doesn't recognize atomic pointers as pointers,
so we need to call load(). This is unfortunate, but in other places
automatic type conversion works fine.
llvm-svn: 241416
We were previously hitting assertion failures in the writer in cases where
a regular object file defined a weak external symbol that was defined by
a bitcode file. Because /export and /entry name mangling were implemented
using weak externals, the same problem affected mangled symbol names in
bitcode files.
The underlying cause of the problem was that weak external symbols were
being resolved before doing LTO, so the symbol table may have contained stale
references to bitcode symbols. The fix here is to defer weak external symbol
resolution until after LTO.
Also implement support for weak external symbols in bitcode files
by modelling them as replaceable DefinedBitcode symbols.
Differential Revision: http://reviews.llvm.org/D10940
llvm-svn: 241391
This worked before, but only by accident, and only with assertions disabled.
We ended up storing a DefinedRegular symbol in the WeakAlias field,
and never using it as an Undefined.
Differential Revision: http://reviews.llvm.org/D10934
llvm-svn: 241376
Previously, __ImageBase symbol got a different value than the one
specified by /base:<number> because the symbol was created in the
SymbolTable's constructor. When the constructor is called,
no command line options are processed yet, so the symbol was
created always with the initial value. This caused wrong relocations
and thus caused mysterious crashes of some executables linked by LLD.
llvm-svn: 241313
On Windows, we have four different main functions, {w,}{main,WinMain}.
The linker has to choose a corresponding entry point function among
{w,}{main,WinMain}CRTStartup. These entry point functions are defined
in the standard library. The linker resolves one of them by looking at
which main function is defined and adding a corresponding undefined
symbol to the symbol table.
Object files containing entry point functions conflicts each other.
For example, we cannot resolve both mainCRTStartup and WinMainCRTStartup
because other symbols defined in the files conflict.
Previously, we inferred CRT function name at the very end of name
resolution. I found that that is sometimes too late. If the linker
already linked one of these four archive member objects, it's too late
to change the decision.
The right thing to do here is to infer entry point name after adding
all symbols from command line files and before adding any other files
(which are specified by directive sections). This patch does that.
llvm-svn: 241236
Previously, we use SymbolTable::rename to resolve AlternateName symbols.
This patch is to merge that mechanism with weak aliases, so that we
remove that function.
llvm-svn: 241230
I think Undefined symbols are a bit more convenient than StringRefs
since SymbolBodies are handles for symbols. You can get resolved
symbols for undefined symbols just by calling getReplacmenet without
looking up the symbol table.
llvm-svn: 241214
Occasionally we have to resolve an undefined symbol to its
mangled symbol. Previously, we did that on calling side of
findMangle by explicitly updating SymbolBody.
In this patch, mangled symbols are handled as weak aliases
for undefined symbols.
llvm-svn: 241213
Previously, the order of adding symbols to the symbol table was simple.
We have a list of all input files. We read each file from beginning of
the list and add all symbols in it to the symbol table.
This patch changes that order. Now all archive files are added to the
symbol table first, and then all the other object files are added.
This shouldn't change the behavior in single-threading, and make room
to parallelize in multi-threading.
In the first step, only lazy symbols are added to the symbol table
because archives contain only Lazy symbols. Member object files
found to be necessary are queued. In the second step, defined and
undefined symbols are added from object files. Adding an undefined
symbol to the symbol table may cause more member files to be added
to the queue. We simply continue reading all object files until the
queue is empty.
Finally, new archive or object files may be added to the queues by
object files' directive sections (which contain new command line
options).
The above process is repeated until we get no new files.
Symbols defined both in object files and in archives can make results
undeterministic. If an archive is read before an object, a new member
file gets linked, while in the other way, no new file would be added.
That is the most popular cause of an undeterministic result or linking
failure as I observed. Separating phases of adding lazy symbols and
undefined symbols makes that deterministic. Adding symbols in each
phase should be parallelizable.
llvm-svn: 241107
method to get a SymbolBody and into the callers, and kill now dead
includes.
This removes the need to have the SymbolBody definition when we're
defining the inline method and makes it a better inline method. That was
the only reason for a lot of header includes here. Removing these and
using forward declarations actually uncovers a bunch of cross-header
dependencies that I've fixed while I'm here, and will allow me to
introduce some *important* inline code into Chunks.h that requires the
definition of ObjectFile.
No functionality changed at this point.
Differential Revision: http://reviews.llvm.org/D10789
llvm-svn: 240982
The previous logic to find default entry name or subsystem does not
seem correct (i.e. was not compatible with MSVC linker). Previously,
default entry name was inferred from CRT functions and user-defined
entry functions. Subsystem was inferred from CRT functions.
Default entry name and subsystem are now inferred based on the
following table. Note that we no longer use CRT functions to infer
them.
Entry name Subsystem
main mainCRTStartup console
wmain wmainCRTStartup console
WinMain WinMainCRTStartup windows
wWinMain wWinMainCRTStartup windows
llvm-svn: 240922
Usually dllexported symbols are defined with 'extern "C"',
so identifying them is easy. We can just do hash table lookup
to look up exported symbols.
However, C++ non-member functions are also allowed to be exported,
and they can be specified with unmangled name. So, if /export:foo
is given, we need to look up not only "foo" but also its all
mangled names. In MSVC mangling scheme, that means that we need to
look up any symbol which starts with "?foo@@Y".
In this patch, we scan the entire symbol table to search for
a mangled symbol. The symbol table is a DenseMap, and that doesn't
support table lookup by string prefix. This is of course very
inefficient. But that should be probably OK because the user
should always add 'extern "C"' to dllexported symbols.
llvm-svn: 240919
This option is to ignore remaining undefined symbols and force
the linker to create an output file anyways.
The existing code assumes that there's no undefined symbol after
reportRemainingUndefines(). That assumption is legitimate.
I also don't want to mess up the existing code for this minor feature.
In order to keep it as is, remaining undefined symbols are replaced
with dummy defined symbols.
llvm-svn: 240913
This flag can be used to produce a map file, which is essentially a list
of objects linked into the final output file together with the RVAs of
their symbols. Because our format differs from MSVC's we expose it as a
separate flag.
Differential Revision: http://reviews.llvm.org/D10773
llvm-svn: 240812
We were resolving entry symbols and /include'd symbols after all other
symbols are resolved. But looks like it's too late. I found that it
causes some program to fail to link.
Let's say we have an object file A which defines symbols X and Y in an
archive. We also have another file B after A which defines X, Y and
_DLLMainCRTStartup in another archive. They conflict each other, so
either A or B can be linked.
If we have _DLLMainCRTStartup as an undefined symbol, file B is always
chosen. If not, there's a chance that A is chosen. If the linker
find it needs _DllMainCRTStartup after that, it's too late.
This patch adds undefined symbols to the symbol table as soon as
possible to fix the issue.
llvm-svn: 240757
The change I made in r240620 was not correct. If a symbol foo is
defined, and if you use __imp_foo, __imp_foo symbol is automatically
defined as a pointer (not just an alias) to foo.
Now that we need to create a chunk for automatically-created symbols.
I defined LocalImportChunk class for them.
llvm-svn: 240622
MSVC linker is able to link an object file created from the following code.
Note that __imp_hello is not defined anywhere.
void hello() { printf("Hello\n"); }
extern void (*__imp_hello)();
int main() { __imp_hello(); }
Function symbols exported from DLLs are automatically mangled by appending
__imp_ prefix, so they have two names (original one and with the prefix).
This "feature" seems to simulate that behavior even for non-DLL symbols.
This is in my opnion very odd feature. Even MSVC linker warns if you use this.
I'm adding that anyway for the sake of compatibiltiy.
llvm-svn: 240620
Previously, we added files in directive sections to the symbol
table as we read the sections, so the link order was depth-first.
That's not compatible with MSVC link.exe nor the old LLD.
This patch is to queue files so that new files are added to the
end of the queue and processed last. Now addFile() doesn't parse
files nor resolve symbols. You need to call run() to process
queued files.
llvm-svn: 240483
In this linker model, adding an undefined symbol may trigger chain
reactions. It may trigger a Lazy symbol to read a new file.
A new file may contain a directive section, which may contain various
command line options.
Previously, we didn't handle chain reactions well. We visited /include'd
symbols only once, so newly-added /include symbols were ignored.
This patch fixes that bug.
Now, the symbol table is versioned; every time the symbol table is
updated, the version number is incremented. We repeat adding undefined
symbols until the version number does not change. It is guaranteed to
converge -- the number of undefined symbol in the system is finite,
and adding the same undefined symbol more than once is basically no-op.
llvm-svn: 240177
Alternatename option is in the form of /alternatename:<from>=<to>.
It's effect is to resolve <from> as <to> if <from> is still undefined
at end of name resolution.
If <from> is not undefined but completely a new symbol, alternatename
shouldn't do anything. Previously, it introduced a new undefined
symbol for <from>, which resulted in undefined symbol error.
llvm-svn: 240161
DLL files are in the same format as executables but they have export tables.
The format of the export table is described in PE/COFF spec section 5.3.
A new class, EdataContents, takes care of creating chunks for export tables.
What we need to do is to parse command line flags for dllexports, and then
instantiate the class to create chunks. For the writer, export table chunks
are opaque data -- it just add chunks to .edata section.
llvm-svn: 239869
In the case where either a bitcode file and a regular file or two bitcode
files export a common or comdat symbol with the same name, the linker needs
to pick one of them following COFF semantics. This patch implements a design
for resolving such symbols that pushes most of the work onto either LLD's
regular mechanism for resolving common or comdat symbols or the IR linker's
mechanism for doing the same.
We modify SymbolBody::compare to always prefer non-bitcode symbols, so that
during the initial phase of symbol resolution, the symbol table always contains
a regular symbol in any case where we need to choose between a regular and
a bitcode symbol. In SymbolTable::addCombinedLTOObject, we force export
any bitcode symbols that were initially pre-empted by a regular symbol,
and later use SymbolBody::compare to choose between the regular symbol in
the symbol table and the regular symbol from the combined LTO object file.
This design seems to be sound, so long as the resolution mechanism is defined
to be commutative and associative modulo arbitrary choices between symbols
(which seems to be the case for COFF).
Differential Revision: http://reviews.llvm.org/D10329
llvm-svn: 239563
The code generator may create references to runtime library symbols such as
__chkstk which were not visible via LTOModule. Handle these cases by loading
the object file from the library, but abort if we end up having loaded any
bitcode objects.
Because loading the object file may have introduced new undefined references,
call reportRemainingUndefines again to detect and report them.
Differential Revision: http://reviews.llvm.org/D10332
llvm-svn: 239386
The LLVM code generator can sometimes synthesize symbols, such as SSE
constants, that are not visible via the LTOModule interface. Allow such
symbols so long as they have definitions.
Differential Revision: http://reviews.llvm.org/D10331
llvm-svn: 239385
Not only entry point symbol but also symbols specified by /include
option must be preserved, as they will never be dead-stripped.
http://reviews.llvm.org/D10220
llvm-svn: 239005
Instead of returning non-categorized errors, return categorized errors.
All uses of make_dynamic_error_code are removed.
Because we don't have error reporting mechanism, I just chose to print out
error messages to stderr, and then return an error object. Not sure if
that's the right thing to do, but at least it seems practical.
http://reviews.llvm.org/D10129
llvm-svn: 238714
Previously, this feature was implemented using a special type of
undefined symbol, in addition to an intricate way to make the resolver
read a virtual file containing that renaming symbols.
Now the feature is directly handled by the symbol table.
The symbol table has a function, rename(), to rename symbols, whose
definition is 4 lines long. Symbol renaming is naturally modeled using
Symbol and SymbolBody.
llvm-svn: 238696
It does not involve notions of virtual archives or virtual files,
nor store a list of undefined symbols somewhere else to consume them later.
We did that before. In this patch, undefined symbols are just added to
the symbol table, which now can be done in very few lines of code.
llvm-svn: 238681
Previously the main linker routine is just a non-member function.
We store some context information to the Config object.
This patch makes it belong to Driver.
llvm-svn: 238677
`main` is not the only main function in Windows. You can choose one
from these four -- {w,}{WinMain,main}. There are four different entry
point functions for them, {w,}{WinMain,main}CRTStartup, respectively.
The linker needs to choose the right one depending on which `main`
function is defined.
llvm-svn: 238667
This is an initial patch for a section-based COFF linker.
The patch has 2300 lines of code including comments and blank lines.
Before diving into details, you want to start from reading README
because it should give you an overview of the design.
All important things are written in the README file, so I write
summary here.
- The linker is already able to self-link on Windows.
- It's significantly faster than the existing implementation.
The existing one takes 5 seconds to link LLD on my machine,
while the new one only takes 1.2 seconds, even though the new
one is not multi-threaded yet. (And a proof-of-concept multi-
threaded version was able to link it in 0.5 seconds.)
- It uses much less memory (250MB vs. 2GB virtual memory space
to self-host).
- IMHO the new code is much simpler and easier to read than
the existing PE/COFF port.
http://reviews.llvm.org/D10036
llvm-svn: 238458