Under this defect resolution, the injected-class-name of a class or class
template cannot be used except in very limited circumstances (when declaring a
constructor, in a nested-name-specifier, in a base-specifier, or in an
elaborated-type-specifier). This is apparently done to make parsing easier, but
it's a pain for us since we don't know whether a template-id using the
injected-class-name is valid at the point when we annotate it (we don't yet
know whether the template-id will become part of an elaborated-type-specifier).
As a tentative resolution to a perceived language defect, mem-initializer-ids
are added to the list of exceptions here (they generally follow the same rules
as base-specifiers).
When the reference to the injected-class-name uses the 'typename' or 'template'
keywords, we permit it to be used to name a type or template as an extension;
other compilers also accept some cases in this area. There are also a couple of
corner cases with dependent template names that we do not yet diagnose, but
which will also get this treatment.
llvm-svn: 292518
This is effectively a warning for code that violates core issue 903 & thus will
become standard error in the future, hopefully. It catches strange null
pointers such as: '\0', 1 - 1, const int null = 0; etc...
There's currently a flaw in this warning (& the warning for 'false' as a null
pointer literal as well) where it doesn't trigger on comparisons (ptr == '\0'
for example). Fix to come in a future patch.
Also, due to this only being a warning, not an error, it triggers quite
frequently on gtest code which tests expressions for null-pointer-ness in a
SFINAE context (so it wouldn't be a problem if this was an error as in an
actual implementation of core issue 903). To workaround this for now, the
diagnostic does not fire in unevaluated contexts.
Review by Sean Silva and Richard Smith.
llvm-svn: 161501
We'd also like for "C++11" or "c++11" to be used for the warning
groups, but without removing the old warning flags. Patches welcome;
I've run out of time to work on this today.
llvm-svn: 141801
declaration because of interesting ordering dependencies while
instantiating a class template or member class thereof. Complain,
rather than asserting (+Asserts) or silently rejecting the code
(-Asserts).
Fixes the crash-on-invalid in PR8965.
llvm-svn: 127129
Remove -faccess-control from -cc1; add -fno-access-control.
Make the driver pass -fno-access-control by default.
Update a bunch of tests to be correct under access control.
llvm-svn: 100880
destination type for initialization, assignment, parameter-passing,
etc. The main issue fixed here is that we used rather confusing
wording for diagnostics such as
t.c:2:9: warning: initializing 'char const [2]' discards qualifiers,
expected 'char *' [-pedantic]
char *name = __func__;
^ ~~~~~~~~
We're not initializing a 'char const [2]', we're initializing a 'char
*' with an expression of type 'char const [2]'. Similar problems
existed for other diagnostics in this area, so I've normalized them all
with more precise descriptive text to say what we're
initializing/converting/assigning/etc. from and to. The warning for
the code above is now:
t.c:2:9: warning: initializing 'char *' from an expression of type
'char const [2]' discards qualifiers [-pedantic]
char *name = __func__;
^ ~~~~~~~~
Fixes <rdar://problem/7447179>.
llvm-svn: 100832
What happens here is that we actually turn the first declaration into a
definition, regardless of whether it was actually originally a definition,
and furthermore we do this all after we've instantiated all the declarations.
This exposes a bug in my DefinitionData patch where it was only setting the
DefinitionData for previous declarations, not future declarations.
Fortunately, there's an iterator for that.
llvm-svn: 99657
therefore not creating ElaboratedTypes, which are still pretty-printed
with the written tag).
Most of these testcase changes were done by script, so don't feel too
sorry for my fingers.
llvm-svn: 98149
that name constructors, the endless joys of out-of-line constructor
definitions, and various other corner cases that the previous hack
never imagined. Fixes PR5688 and tightens up semantic analysis for
constructor names.
Additionally, fixed a problem where we wouldn't properly enter the
declarator scope of a parenthesized declarator. We were entering the
scope, then leaving it when we saw the ")"; now, we re-enter the
declarator scope before parsing the parameter list.
Note that we are forced to perform some tentative parsing within a
class (call it C) to tell the difference between
C(int); // constructor
and
C (f)(int); // member function
which is rather unfortunate. And, although it isn't necessary for
correctness, we use the same tentative-parsing mechanism for
out-of-line constructors to improve diagnostics in icky cases like:
C::C C::f(int); // error: C::C refers to the constructor name, but
// we complain nicely and recover by treating it as
// a type.
llvm-svn: 93322
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
the declarations of member classes are instantiated when the owning
class template is instantiated. The definitions of such member classes
are instantiated when a complete type is required.
This change also introduces the injected-class-name into a class
template specialization.
llvm-svn: 67707