This will allow us to make osx specific changes easier. Because apple silicon macs also run on aarch64, it was easy to confuse it with iOS.
rdar://75302812
Reviewed By: yln
Differential Revision: https://reviews.llvm.org/D100157
Mark the test as unsupported to bring the bot online. Could probably be
permanently fixed by using one of the workarounds already present in
compiler-rt.
The current variable name isn't used anywhere else, which indicates it's
a typo. Let's fix it before someone copy+pastes it somewhere else.
Reviewed By: Jim
Differential Revision: https://reviews.llvm.org/D39157
ASan declares these functions as strongly-defined, which results in
'duplicate symbol' errors when trying to replace them in user code when
linking the runtimes statically.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D100220
D99763 fixed `SizeClassAllocatorLocalCache::drain` but with the
assumption that `BatchClassId` is 0 - which is currently true. I would
rather not make the assumption so that if we ever change the ID of
the batch class, the loop would still work. Since `BatchClassId` is
used more often in `local_cache.h`, introduce a constant so that we
don't have to specify `SizeClassMap::` every time.
Differential Revision: https://reviews.llvm.org/D100062
After a follow-up change (D98332) this header can be included the same time
as fenv.h when running the tests. To avoid enum members conflicting with
the macros/enums defined in the host fenv.h, prefix them with CRT_.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D98333
These tests were added in:
1daa48f00559e422c90b
malloc_zero.c and realloc_too_big.c fail when only
leak sanitizer is enabled.
http://lab.llvm.org:8011/#/builders/59/builds/1635
(also in an armv8 32 bit build)
(I would XFAIL them but the same test is run with
address and leak sanitizer enabled and that one does
pass)
Fixes the ASan RISC-V memory mapping (originally introduced by D87580 and
D87581). This should be an improvement both in terms of first principles
soundness and observed test failures --- test failures would occur
non-deterministically depending on the ASLR random offset.
On RISC-V Linux (64-bit), `TASK_UNMAPPED_BASE` is currently defined as
`PAGE_ALIGN(TASK_SIZE / 3)`. The non-power-of-two divisor makes the result
be the not very round number 0x1555556000. That address had to be further
rounded to ensure page alignment after the shadow scale shifting is applied.
Still, that value explains why the mapping table may look less regular than
expected.
Further cleanups:
- Moved the mapping table comment, to ensure that the two Linux/AArch64
tables stayed together;
- Removed mention of Sv48. Neither the original mapping nor this one are
compatible with an actual Linux Sv48 address space (mainline Linux still
operates Sv48 in Sv39 mode). A future patch can improve this;
- Removed the additional comments, for consistency.
Differential Revision: https://reviews.llvm.org/D97646
Previously it wasn't possible to configure a standalone compiler-rt
build if the `LLVMConfig.cmake` file isn't present in a shipped
toolchain.
This patch adds a fallback behaviour for when `LLVMConfig.cmake` is not
available in the toolchain being used for configure. The fallback
behaviour mocks out the bare minimum required to make a configure
succeed when the host is Darwin. Support for other platforms could
be added in future patches.
The new code path is taken either in one of the following cases:
* `llvm-config` is not available.
* `llvm-config` is available but it provides an invalid path for the CMake files.
The motivation here is to be able to generate the compiler-rt lit test
suites for an arbitrary LLVM toolchain and then run the tests against
it.
The invocation to do this looks something like.
```
CC=/path/to/cc \
CXX=/path/to/c++ \
cmake \
-G Ninja \
-DLLVM_CONFIG_PATH=/path/to/llvm-config \
-DCOMPILER_RT_INCLUDE_TESTS=ON \
/path/to/llvm-project/compiler-rt
# Note we don't compile compiler-rt in this workflow.
bin/llvm-lit -v test/path/to/generated/test_suite
```
A possible alternative approach is to configure the
`cmake/modules/LLVMConfig.cmake.in` file in the LLVM source tree
and then include it. This approach was not taken because it is more
complicated.
An interesting side benefit of this patch is that it is now
possible to configure on Darwin without `llvm-config` being available
by configuring with `-DLLVM_CONFIG_PATH=""`. This moves us a step
closer to a world where no LLVM build artefacts are required to
build compiler-rt.
rdar://76016632
Differential Revision: https://reviews.llvm.org/D99621
layout.
When doing a standalone compiler-rt build we currently rely on
getting information from the `llvm-config` binary. Previously
we would rely on calling `llvm-config --src-root` to find the
LLVM sources. Unfortunately the returned path could easily be wrong
if the sources were built on another machine.
Now that compiler-rt is part of a monorepo we can easily fix this
problem by finding the LLVM source tree next to `compiler-rt` in
the monorepo. We do this regardless of whether or not the `llvm-config`
binary is available which moves us one step closer to not requiring
`llvm-config` to be available.
To try avoid anyone breaking anyone who relies on the current behavior,
if the path assuming the monorepo layout doesn't exist we invoke
`llvm-config --src-root` to get the path. A deprecation warning is
emitted if this path is taken because we should remove this path
in the future given that other runtimes already assume the monorepo
layout.
We also now emit a warning if `LLVM_MAIN_SRC_DIR` does not exist.
The intention is that this should be a hard error in future but
to avoid breaking existing users we'll keep this as a warning
for now.
rdar://76016632
Differential Revision: https://reviews.llvm.org/D99620
This was reverted by f176803ef1 due to
Ubuntu 16.04 x86-64 glibc 2.23 problems.
This commit additionally calls `__tls_get_addr({modid,0})` to work around the
dlpi_tls_data==NULL issues for glibc<2.25
(https://sourceware.org/bugzilla/show_bug.cgi?id=19826)
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
This simplification enables D99566 for TLS Variant I architectures.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
The check was removed in D99786 as it seems that quarantine is
irrelevant for the just created allocator. However there is internal
issues with tagged memory access.
We should be able to fix iterateOverChunks for taggin later.
Existing implementations took up to 30 minutues to execute on my setup.
Now it's more convenient to debug a single test.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D99786
Linux-only for now. Some mac bits stubbed out, but not tested.
Good enough for the tiny_race.c example at
https://clang.llvm.org/docs/ThreadSanitizer.html :
$ out/gn/bin/clang -fsanitize=address -g -O1 tiny_race.c
$ while true; do ./a.out || echo $? ; done
While here, also make `-fsanitize=address` work for .c files.
Differential Revision: https://reviews.llvm.org/D99795
This change adds a SimpleFastHash64 variant of SimpleFastHash which allows call sites to specify a starting value and get a 64 bit hash in return. This allows a hash to be "resumed" with more data.
A later patch needs this to be able to hash a sequence of module-relative values one at a time, rather than just a region a memory.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D94510
Trying to build the builtins code fails because `arm64_32_SOURCES` is
missing. Setting it to the same list used for `aarch64_SOURCES` solves
that problem and allow the builtins to compile for that architecture.
Additionally, arm64_32 is added as a possible architecture for watchos
platforms.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D99690
On 64-bit systems with small VMAs (e.g. 39-bit) we can't use
SizeClassAllocator64 parameterized with size class maps containing a large
number of classes, as that will make the allocator region size too small
(< 2^32). Several tests were already disabled for Android because of this.
This patch provides the correct allocator configuration for RISC-V
(riscv64), generalizes the gating condition for tests that can't be enabled
for small VMA systems, and tweaks the tests that can be made compatible with
those systems to enable them.
I think the previous gating on Android should instead be AArch64+Android, so
the patch reflects that.
Differential Revision: https://reviews.llvm.org/D97234
The previous code may underestimate the static TLS surplus part, which may cause
false positives to LeakSanitizer if a dynamically loaded module uses the surplus
and there is an allocation only referenced by a thread's TLS.
With D98926, many_tls_keys_pthread.cpp appears to be working.
On glibc 2.30-0ubuntu2, swapcontext.cpp and Linux/fork_and_leak.cpp work fine
but they strangely fail on clang-cmake-aarch64-full
(https://lab.llvm.org/buildbot/#/builders/7/builds/2240).
Disable them for now.
Note: check-lsan was recently enabled on AArch64 in D98985. A test takes
10+ seconds. We should figure out the bottleneck.
```
/b/sanitizer-x86_64-linux/build/llvm-project/compiler-rt/test/memprof/TestCases/test_terse.cpp:11:11: error: CHECK: expected string not found in input
// CHECK: MIB:[[STACKID:[0-9]+]]/1/40.00/40/40/20.00/20/20/[[AVELIFETIME:[0-9]+]].00/[[AVELIFETIME]]/[[AVELIFETIME]]/0/0/0/0
^
<stdin>:1:1: note: scanning from here
MIB:StackID/AllocCount/AveSize/MinSize/MaxSize/AveAccessCount/MinAccessCount/MaxAccessCount/AveLifetime/MinLifetime/MaxLifetime/NumMigratedCpu/NumLifetimeOverlaps/NumSameAllocCpu/NumSameDeallocCpu
^
<stdin>:4:1: note: possible intended match here
MIB:134217729/1/40.00/40/40/20.00/20/20/7.00/7/7/1/0/0/0
```
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS ranges. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
In the future, we can move `ThreadDescriptorSize` code to lsan (and consider
intercepting `pthread_setspecific`) to avoid hacks in generic code.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Make TSan runtime initialization and finalization hooks work
even if these hooks are not built in the main executable. When these
hooks are defined in another library that is not directly linked against
the TSan runtime (e.g., Swift runtime) we cannot rely on the "strong-def
overriding weak-def" mechanics and have to look them up via `dlsym()`.
Let's also define hooks that are easier to use from C-only code:
```
extern "C" void __tsan_on_initialize();
extern "C" int __tsan_on_finalize(int failed);
```
For now, these will call through to the old hooks. Eventually, we want
to adopt the new hooks downstream and remove the old ones.
This is part of the effort to support Swift Tasks (async/await and
actors) in TSan.
rdar://74256720
Reviewed By: vitalybuka, delcypher
Differential Revision: https://reviews.llvm.org/D98810
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Supported ctime_r, fgets, getcwd, get_current_dir_name, gethostname,
getrlimit, getrusage, strcpy, time, inet_pton, localtime_r,
getpwuid_r, epoll_wait, poll, select, sched_getaffinity
Most of them work as calling their non-origin verision directly.
This is a part of https://reviews.llvm.org/D95835.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D98966
Supported strrchr, strrstr, strto*, recvmmsg, recrmsg, nanosleep,
memchr, snprintf, socketpair, sprintf, getocketname, getsocketopt,
gettimeofday, getpeername.
strcpy was added because the test of sprintf need it. It will be
committed by D98966. Please ignore it when reviewing.
This is a part of https://reviews.llvm.org/D95835.
Reviewed By: gbalats
Differential Revision: https://reviews.llvm.org/D99109
The function works like MapDynamicShadow, except that it creates aliased
memory to the right of the shadow. The main use case is for HWASan
aliasing mode, which gets fast IsAlias() checks by exploiting the fact
that the upper bits of the shadow base and aliased memory match.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98369
`check-lsan` passed on an aarch64-*-linux machine.
Unsupport `many_tls_keys_pthread.cpp` for now: it requires GetTls to include
`specific_1stblock` and `specific` in `struct pthread`.
Differential Revision: https://reviews.llvm.org/D98985
The main use case for this change is HWASan aliasing mode, which premaps
the alias space adjacent to the dynamic shadow. With this change, the
primary allocator can allocate from the alias space instead of a
separate region.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98293
The main use case for this change is HWASan aliasing mode, which premaps
the alias space adjacent to the dynamic shadow. With this change, the
primary allocator can allocate from the alias space instead of a
separate region.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98293
x86_64 aliasing mode will use fewer than 8 bits for tags, so refactor
existing code to remove hard-coded 0xff and 8 values.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98072
Subsequent patches will implement page-aliasing mode for x86_64, which
will initially only work for the primary heap allocator. We force
callback instrumentation to simplify the initial aliasing
implementation.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98069
If we don't specify the c++ version in these tests, it could cause compile errors because the compiler could default to an older c++
rdar://75247244
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D98913
-mbranch-protection protects the LR on the stack with PAC.
When the frames are walked the LR need to be cleared.
This inline assembly later will be replaced with a new builtin.
Test: build with -DCMAKE_C_FLAGS="-mbranch-protection=standard".
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D98008
If producing libraries with an arch suffix (i.e. if
LLVM_ENABLE_PER_TARGET_RUNTIME_DIR isn't set), we append the
architecture name. However, for arm, clang doesn't look for libraries
with the full architecture name, but only looks for "arm" and "armhf".
Try to deduce what the full target triple might have been, and use
that for deciding between "arm" and "armhf".
This tries to reapply this bit from D98173, that had to be reverted
in 7b153b43d3 due to affecting how
the builtins themselves are compiled, not only affecting the output
file name.
Differential Revision: https://reviews.llvm.org/D98452
InternalScopedString uses InternalMmapVector internally
so it can be resized dynamically as needed.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D98751
An implementation of `__sanitizer::BufferedStackTrace::UnwindImpl` is
provided per sanitizer, but there isn't one for sanitizer-common. In
non-optimized builds of the sanitizer-common tests that becomes a problem:
the test `sanitizer_stacktrace_test.cpp` won't have a reference to that
method optimized away, causing linking errors. This patch provides a dummy
implementation, which fixes those builds.
Differential Revision: https://reviews.llvm.org/D96956
As reported in D96348 <https://reviews.llvm.org/D96348>, the
`Posix/regex_startend.cpp` test `FAIL`s on Solaris because
`REG_STARTEND` isn't defined. It's a BSD extension not present everywhere.
E.g. AIX doesn't have it, too.
Fixed by wrapping the test in `#ifdef REG_STARTEND`.
Tested on `amd64-pc-solaris2.11`, `sparcv9-sun-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D98425
On Darwin, MallocNanoZone may log after execv, which messes up this test.
Disable MallocNanoZone for this test since we don't use it anyway with asan.
This environment variable should only affect Darwin and not change behavior on other platforms.
rdar://74992832
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D98735
size() is inconsistent with length().
In most size() use cases we can replace InternalScopedString with
InternalMmapVector.
Remove non-constant data() to avoid direct manipulations of internal
buffer. append() should be enought to modify InternalScopedString.
This fixes detection when linking isn't supported (i.e. while building
builtins the first time).
Since 8368e4d54c, after setting
CMAKE_TRY_COMPILE_TARGET_TYPE to STATIC_LIBRARY, this isn't strictly
needed, but is good for correctness anyway (and in case that commit
ends up reverted).
Differential Revision: https://reviews.llvm.org/D98737
Also use this in ReadBinaryName which currently is producing
warnings.
Keep pragmas for silencing warnings in sanitizer_unwind_win.cpp,
as that can be called more frequently.
Differential Revision: https://reviews.llvm.org/D97726
Android's native bridge (i.e. AArch64 emulator) doesn't support TBI so
we need a way to disable TBI on Linux when targeting the native bridge.
This can also be used to test the no-TBI code path on Linux (currently
only used on Fuchsia), or make Scudo compatible with very old
(pre-commit d50240a5f6ceaf690a77b0fccb17be51cfa151c2 from June 2013)
Linux kernels that do not enable TBI.
Differential Revision: https://reviews.llvm.org/D98732
Since we are looking to remove the old Scudo, we have to have a .so for
parity purposes as some platforms use it.
I tested this on Fuchsia & Linux, not on Android though.
Differential Revision: https://reviews.llvm.org/D98456
On 64-bit systems with small VMAs (e.g. 39-bit) we can't use
`SizeClassAllocator64` parameterized with size class maps containing a
large number of classes, as that will make the allocator region size too
small (< 2^32). Several tests were already disabled for Android because
of this.
This patch provides the correct allocator configuration for RISC-V
(riscv64), generalizes the gating condition for tests that can't be
enabled for small VMA systems, and tweaks the tests that can be made
compatible with those systems to enable them.
Differential Revision: https://reviews.llvm.org/D97234
-mbranch-protection protects the LR on the stack with PAC.
When the frames are walked the LR need to be cleared.
This inline assembly later will be replaced with a new builtin.
Test: build with -DCMAKE_C_FLAGS="-mbranch-protection=standard".
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D98008
Previously, that configuration only used the generic sources, in
addition to the couple specifically chosen arm/mingw files.
Differential Revision: https://reviews.llvm.org/D98547
The existing value of 0x1000 sets the IXE bit (Inexact floating-point exception
trap enable), but we really want to be setting IXC, bit 4:
Inexact cumulative floating-point exception bit. This bit is set to 1 to
indicate that the Inexact floating-point exception has occurred since 0 was
last written to this bit.
Reviewed By: kongyi, peter.smith
Differential Revision: https://reviews.llvm.org/D98353
The inlining of this function needs to be disabled as it is part of the
inpsected stack traces. It's string representation will look different
depending on if it was inlined or not which will cause it's string comparison
to fail.
When it was inlined in only one of the two execution stacks,
minimize_two_crashes.test failed on SystemZ. For details see
https://bugs.llvm.org/show_bug.cgi?id=49152.
Reviewers: Ulrich Weigand, Matt Morehouse, Arthur Eubanks
Differential Revision: https://reviews.llvm.org/D97975
Right now, when you have an invalid memory address, asan would just crash and does not offer much useful info.
This patch attempted to give a bit more detail on the access.
Differential Revision: https://reviews.llvm.org/D98280
Some linux distributions produce versioned llvm-symbolizer binaries,
e.g. my llvm-11 installation puts the symbolizer binary at
/usr/bin/llvm-symbolizer-11.0.0 . However if you then try to run
a binary containing ASAN with
ASAN_SYMBOLIZER_PATH=..../llvm-symbolizer-FOO , it will fail on startup
with "isn't a known symbolizer".
Although it is possible to work around this by setting up symlinks,
that's kindof ugly - supporting versioned binaries is a nicer solution.
(There are now multiple stack overflow and blog posts talking about
this exact issue :) .)
Originally added in:
https://reviews.llvm.org/D8285
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D97682
If a log message is triggered between execv and child, this test fails.
In the meantime, disable the test to unblock CI
rdar://74992832
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D98453
Attempting to build a standalone libFuzzer in Fuchsia's default toolchain for the purpose of cross-compiling the unit tests revealed a number of not-quite-proper type conversions. Fuchsia's toolchain include `-std=c++17` and `-Werror`, among others, leading to many errors like `-Wshorten-64-to-32`, `-Wimplicit-float-conversion`, etc.
Most of these have been addressed by simply making the conversion explicit with a `static_cast`. These typically fell into one of two categories: 1) conversions between types where high precision isn't critical, e.g. the "energy" calculations for `InputInfo`, and 2) conversions where the values will never reach the bits being truncated, e.g. `DftTimeInSeconds` is not going to exceed 136 years.
The major exception to this is the number of features: there are several places that treat features as `size_t`, and others as `uint32_t`. This change makes the decision to cap the features at 32 bits. The maximum value of a feature as produced by `TracePC::CollectFeatures` is roughly:
(NumPCsInPCTables + ValueBitMap::kMapSizeInBits + ExtraCountersBegin() - ExtraCountersEnd() + log2(SIZE_MAX)) * 8
It's conceivable for extremely large targets and/or extra counters that this limit could be reached. This shouldn't break fuzzing, but it will cause certain features to collide and lower the fuzzers overall precision. To address this, this change adds a warning to TracePC::PrintModuleInfo about excessive feature size if it is detected, and recommends refactoring the fuzzer into several smaller ones.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D97992
Don't normalize arm architecture names; doing that loses the ability
to pick the right implementation of builtins for each architecture
variant. When building compiler-rt builtins as part of a
runtimes build, builtins for multiple armv* variants could be built
in the same directory, and with the simplified architecture name,
they'd all be built in the same directory, overlapping each other.
1. PGOMemOPSizeOpt grabs only the first, up to five (by default) entries from
the value profile metadata and preserves the remaining entries for the fallback
memop call site. If there are more than five entries, the rest of the entries
would get dropped. This is fine for PGOMemOPSizeOpt itself as it only promotes
up to 3 (by default) values, but potentially not for other downstream passes
that may use the value profile metadata.
2. PGOMemOPSizeOpt originally assumed that only values 0 through 8 are kept
track of. When the range buckets were introduced, it was changed to skip the
range buckets, but since it does not grab all entries (only five), if some range
buckets exist in the first five entries, it could potentially cause fewer
promotion opportunities (eg. if 4 out of 5 were range buckets, it may be able to
promote up to one non-range bucket, as opposed to 3.) Also, combined with 1, it
means that wrong entries may be preserved, as it didn't correctly keep track of
which were entries were skipped.
To fix this, PGOMemOPSizeOpt now grabs all the entries (up to the maximum number
of value profile buckets), keeps track of which entries were skipped, and
preserves all the remaining entries.
Differential Revision: https://reviews.llvm.org/D97592
When building builtins, the toolchain might not yet be at a stage
when linking a test application works yet, as builtins aren't
available. Therefore set CMAKE_TRY_COMPILE_TARGET_TYPE to STATIC_LIBRARY,
to avoid failing the compiler sanity check.
Setting CMAKE_TRY_COMPILE_TARGET_TYPE to STATIC_LIBRARY has the risk
of making checks for library availability succeed falsely (e.g.
indicating that libs would be available that really aren't, as the
tests don't do any linking), but the builtins library doesn't try to
link against any external libraries (and only produces static libraries
anyway), so it should be safe here.
This avoids having to set CMAKE_C_COMPILER_WORKS when bootstrapping a
cross toolchain, when building the builtins.
Differential Revision: https://reviews.llvm.org/D91334
The paciasp and autiasp instructions are only accepted by recent
compilers, but have the same encoding as hint instructions, so we can
use the hint menmonic to support older compilers.
This avoids the `__NR_gettimeofday` syscall number, which does not exist on 32-bit musl (it has `__NR_gettimeofday_time32`).
This switched Android to `clock_gettime` as well, which should work according to the old code before D96925.
Tested on Alpine Linux x86-64 (musl) and FreeBSD x86-64.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D98121
All check-tsan tests fail on aarch64-*-linux because HeapMemEnd() > ShadowBeg()
for the following code path:
```
#if defined(__aarch64__) && !HAS_48_BIT_ADDRESS_SPACE
ProtectRange(HeapMemEnd(), ShadowBeg());
```
Restore the behavior before D86377 for aarch64-*-linux.
The LR is stored to off-stack spill area where it is vulnerable.
"paciasp" add an auth code to the LR while the "autiasp" verifies that so
LR can't be modiifed on the spill area.
Test: build with -DCMAKE_C_FLAGS="-mbranch-protection=standard",
run on Armv8.3 capable hardware with PAuth.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D98009
On FreeBSD the sys/timeb.h header has a #warning that it's deprecated.
However, we need to include this header here, so silence this warning that
is printed multiple times otherwise.
Reviewed By: dim
Differential Revision: https://reviews.llvm.org/D94963
I accidentally committed the wrong version of this patch which didn't
actually enable the hooks for FreeBSD. Fixing the typo allows the tests
to actually pass.
This corresponds to getArchNameForCompilerRTLib in clang; any
32 bit x86 architecture triple (except on android, but those
exceptions are already handled in compiler-rt on a different level)
get the compiler rt library names with i386; arm targets get either
"arm" or "armhf". (Mapping to "armhf" is handled in the toplevel
CMakeLists.txt.)
Differential Revision: https://reviews.llvm.org/D98173
This is a minor issue because the TargetValue parameter of `__llvm_profile_instrument_memop`
is usually small and cannot exceed 2**31 at all.
Differential Revision: https://reviews.llvm.org/D97640
There is no centralized store of information related to secondary
allocations. Moreover the allocations themselves become inaccessible
when the allocation is freed in order to implement UAF detection,
so we can't store information there to be used in case of UAF
anyway.
Therefore our storage location for tracking stack traces of secondary
allocations is a ring buffer. The ring buffer is copied to the process
creating the crash dump when a fault occurs.
The ring buffer is also used to store stack traces for primary
deallocations. Stack traces for primary allocations continue to be
stored inline.
In order to support the scenario where an access to the ring buffer
is interrupted by a concurrently occurring crash, the ring buffer is
accessed in a lock-free manner.
Differential Revision: https://reviews.llvm.org/D94212
Go requires 47 bits VA for tsan.
Go will run race_detector testcases unless tsan warns about "unsupported VMA range"
Author: mzh (Meng Zhuo)
Reviewed-in: https://reviews.llvm.org/D98238
This patch enhances the secondary allocator to be able to detect buffer
overflow, and (on hardware supporting memory tagging) use-after-free
and buffer underflow.
Use-after-free detection is implemented by setting memory page
protection to PROT_NONE on free. Because this must be done immediately
rather than after the memory has been quarantined, we no longer use the
combined allocator quarantine for secondary allocations. Instead, a
quarantine has been added to the secondary allocator cache.
Buffer overflow detection is implemented by aligning the allocation
to the right of the writable pages, so that any overflows will
spill into the guard page to the right of the allocation, which
will have PROT_NONE page protection. Because this would require the
secondary allocator to produce a header at the correct position,
the responsibility for ensuring chunk alignment has been moved to
the secondary allocator.
Buffer underflow detection has been implemented on hardware supporting
memory tagging by tagging the memory region between the start of the
mapping and the start of the allocation with a non-zero tag. Due to
the cost of pre-tagging secondary allocations and the memory bandwidth
cost of tagged accesses, the allocation itself uses a tag of 0 and
only the first four pages have memory tagging enabled.
This is a reland of commit 7a0da88943 which was reverted in commit
9678b07e42. This reland includes the following changes:
- Fix the calculation of BlockSize which led to incorrect statistics
returned by mallinfo().
- Add -Wno-pedantic to silence GCC warning.
- Optionally add some slack at the end of secondary allocations to help
work around buggy applications that read off the end of their
allocation.
Differential Revision: https://reviews.llvm.org/D93731
A RISC-V implementation of `internal_clone` was introduced in D87573, as
part of the RISC-V ASan patch set by @EccoTheDolphin. That function was
never used/tested until I ported LSan for RISC-V, as part of D92403. That
port revealed problems in the original implementation, so I provided a fix
in D92403. Unfortunately, my choice of replacing the assembly with regular
C++ code wasn't correct. The clone syscall arguments specify a separate
stack, so non-inlined calls, spills, etc. aren't going to work. This wasn't
a problem in practice for optimized builds of Compiler-RT, but it breaks
for debug builds. This patch fixes the original problem while keeping the
assembly.
Differential Revision: https://reviews.llvm.org/D96954
Previously, on GLibc systems, the interceptor was calling __compat_regexec
(regexec@GLIBC_2.2.5) insead of the newer __regexec (regexec@GLIBC_2.3.4).
The __compat_regexec strips the REG_STARTEND flag but does not report an
error if other flags are present. This can result in infinite loops for
programs that use REG_STARTEND to find all matches inside a buffer (since
ignoring REG_STARTEND means that the search always starts from the first
character).
The underlying issue is that GLibc's dlsym(RTLD_NEXT, ...) appears to
always return the oldest versioned symbol instead of the default. This
means it does not match the behaviour of dlsym(RTLD_DEFAULT, ...) or the
behaviour documented in the manpage.
It appears a similar issue was encountered with realpath and worked around
in 77ef78a0a5.
See also https://sourceware.org/bugzilla/show_bug.cgi?id=14932 and
https://sourceware.org/bugzilla/show_bug.cgi?id=1319.
Fixes https://github.com/google/sanitizers/issues/1371
Reviewed By: #sanitizers, vitalybuka, marxin
Differential Revision: https://reviews.llvm.org/D96348
This reverts commit bde2e56071.
This patch produces a compile failure on linux amd64 environments, when
running:
ninja GotsanRuntimeCheck
I get various build errors:
../rtl/tsan_platform.h:608: error: use of undeclared identifier 'Mapping'
return MappingImpl<Mapping, Type>();
Here's a buildbot with the same failure during stage "check-tsan in gcc
build", there are other unrelated failures in there.
http://lab.llvm.org:8011/#/builders/37/builds/2831
As reported in D93278 post-review symlinking requires privilege escalation on Windows.
Copying is functionally same, so fallback to it for systems that aren't Unix-like.
This is similar to the solution in AddLLVM.cmake.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D98111
This patch modifies the x86_64 XRay trampolines to fix the CFI information
generated by the assembler. One of the main issues in correcting the CFI
directives is the `ALIGNED_CALL_RAX` macro, which makes the CFA dependent on
the alignment of the stack. However, this macro is not really necessary because
some additional assumptions can be made on the alignment of the stack when the
trampolines are called. The code has been written as if the stack is guaranteed
to be 8-bytes aligned; however, it is instead guaranteed to be misaligned by 8
bytes with respect to a 16-bytes alignment. For this reason, always moving the
stack pointer by 8 bytes is sufficient to restore the appropriate alignment.
Trampolines that are called from within a function as a result of the builtins
`__xray_typedevent` and `__xray_customevent` are necessarely called with the
stack properly aligned so, in this case too, `ALIGNED_CALL_RAX` can be
eliminated.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49060
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96785
The hackery is due to glibc clock_gettime crashing from preinit_array (D40679).
32-bit musl architectures do not define `__NR_clock_gettime` so the code causes a compile error.
Tested on Alpine Linux x86-64 (musl) and FreeBSD x86-64.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D96925