Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370
SymbolBody and Symbol were separated classes due to a historical reason.
Symbol used to be a pointer to a SymbolBody, and the relationship
between Symbol and SymbolBody was n:1.
r2681780 changed that. Since that patch, SymbolBody and Symbol are
allocated next to each other to improve memory locality, and they have
1:1 relationship now. So, the separation of Symbol and SymbolBody no
longer makes sense.
This patch merges them into one class. In order to avoid updating too
many places, I chose SymbolBody as a unified name. I'll rename it Symbol
in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D39406
llvm-svn: 317006
Summary:
The COFF linker and the ELF linker have long had similar but separate
Error.h and Error.cpp files to implement error handling. This change
introduces new error handling code in Common/ErrorHandler.h, changes the
COFF and ELF linkers to use it, and removes the old, separate
implementations.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: smeenai, jyknight, emaste, sdardis, nemanjai, nhaehnle, mgorny, javed.absar, kbarton, fedor.sergeev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39259
llvm-svn: 316624
"Commands" was ambiguous because in the linker script, everything is
a command. We used to handle only SECTIONS commands, and at the time,
it might make sense to call them the commands, but it is no longer
the case. We handle not only SECTIONS but also MEMORY, PHDRS, VERSION,
etc., and they are all commands.
llvm-svn: 315409
ScriptConfiguration was a class to contain parsed results of
linker scripts. LinkerScript is a class to interpret it.
That ditinction was needed because we haven't instantiated
LinkerScript early (because, IIRC, LinkerScript class was a
ELFT template function). So, when we parse linker scripts,
we couldn't directly store the result to a LinkerScript instance.
Now, that limitation is gone. We instantiate LinkerScript
at the very beginning of our main function. We can directly
store parse results to a LinkerScript instance.
llvm-svn: 315403
New lld's files are spread under lib subdirectory, and it isn't easy
to find which files are actually maintained. This patch moves maintained
files to Common subdirectory.
Differential Revision: https://reviews.llvm.org/D37645
llvm-svn: 314719
Previously when BC file had global variable that was accessed from script,
it was optimized away or inlined by IPO.
In this patch I add symbols at left side of assignment expression as LinkerRedefined,
what prevents optimization for them.
Differential revision: https://reviews.llvm.org/D37059
llvm-svn: 314097
In order to keep track of symbol renaming, we used to have
Config->SymbolRenaming, and whether a symbol is in the map or not
affects its symbol attribute (i.e. "LinkeRedefined" bit).
This patch adds "CanInline" bit to Symbol to aggreagate symbol
information in one place and removed the member from Config since
no one except SymbolTable now uses the table.
llvm-svn: 314088
This is PR33097.
Previously when doing relocatable link, all IR symbols were absent
in result object file. Patch makes external symbols to be exported.
Differential revision: https://reviews.llvm.org/D36957
llvm-svn: 311431
With this Symbol has the same size as before, but DefinedRegular goes
from 72 to 64 bytes.
I also find this a bit easier to read. There are fewer places
initializing File for example.
This has a small but measurable speed improvement on all tests (1%
max).
llvm-svn: 310142
Reviewing another change I noticed that we use "getSymbols" to mean
different things in different files. Depending on the file it can
return
ArrayRef<StringRef>
ArrayRef<SymbolBody*>
ArrayRef<Symbol*>
ArrayRef<Elf_Sym>
With this change it always returns an ArrayRef<SymbolBody*>. The other
functions are renamed getELFsyms() and getSymbolNames().
Note that we cannot return ArrayRef<Symbol*> instead of
ArreyRef<SymbolBody*> because local symbols have a SymbolBody but not
a Symbol.
llvm-svn: 309840
With this we only ask LTO to keep a C named section if there is a
__start_ or __end symbol.
This is not as strict as lld's --gc-sections, but is as good as we can
get without having a far more detailed ir summary.
llvm-svn: 309232
We do this emitting a section for every function when LTO is used.
Fixes PR33888.
Differential Revision: https://reviews.llvm.org/D35809
llvm-svn: 308915
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
procedural optimizations to prevent dropping symbols and allow the linker
to process re-directs.
PR33145: --wrap doesn't work with lto.
Differential Revision: https://reviews.llvm.org/D33621
llvm-svn: 304719
It doesn't matter what binding we store in a non-UsedInRegularObj undefined
symbol because we should reset it when we see a real undefined symbol in
a combined LTO object. The fact that we weren't doing so before is a bug
(PR32899) which is now fixed.
llvm-svn: 302067
If there is a bug in the LTO implementation that causes it to fail to provide
an expected symbol definition, the linker should report an undefined symbol
error. Unfortunately, we were failing to do so if the symbol definition
was weak, as the undefine() function was turning the definition into a weak
undefined symbol, which resolves to zero if the symbol remains undefined. This
patch causes us to set the binding to STB_GLOBAL when we undefine a symbol.
I can't see a good way to test this. The behaviour should only be observable
if there is a bug in the LTO implementation.
Differential Revision: https://reviews.llvm.org/D32731
llvm-svn: 301897
We had a few Config member functions that returns configuration values.
For example, we had is64() which returns true if the target is 64-bit.
The return values of these functions are constant and never change.
This patch is to compute them only once to make it clear that they'll
never change.
llvm-svn: 298168
This patch causes us to use pruneCache() to prune the ThinLTO cache after
completing LTO. A new flag --thinlto-cache-policy allows users to configure
the policy.
Differential Revision: https://reviews.llvm.org/D31021
llvm-svn: 298036
After the call to sys::fs::exists succeeds, indicating a cache hit, we call
AddFile and the client will open the file using the supplied path. If the
client is using cache pruning, there is a potential race between the pruner
and the client. To avoid this, change the caching API so that it provides
a MemoryBuffer to the client, and have clients use that MemoryBuffer where
possible.
This scheme won't work with the gold plugin because the plugin API expects a
file path. So we have the gold plugin use the buffer identifier as a path and
live with the race for now. (Note that the gold plugin isn't actually affected
by the problem at the moment because it doesn't support cache pruning.)
This effectively reverts r279883 modulo the change to use the existing path
in the gold plugin.
Differential Revision: https://reviews.llvm.org/D31063
llvm-svn: 298020
This patch adds an option named --thinlto-cache-dir, which specifies the
path to a directory in which to cache native object files for ThinLTO
incremental builds.
Differential Revision: https://reviews.llvm.org/D30509
llvm-svn: 296702
Summary: llvm/CodeGen/CommandFlags.h a utility function InitTargetOptionsFromCodeGenFlags which is used to set target options from flags based on the command line. The command line flags are stored in globals defined in the same file, and including the file in multiple places causes the globals to be defined multiple times, leading to linker errors. This change adds a single place in lld where these globals are defined and exports only the utility function. This makes it possible to call InitTargetOptionsFromCodeGenFlags from multiple places in lld, which a follow-up change will do.
Reviewers: davide, ruiu
Reviewed By: davide, ruiu
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D29058
llvm-svn: 293965
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
This is a recommit of r293283 with a fixed comparison predicate as
std::merge requires a strict weak ordering.
Differential revision: https://reviews.llvm.org/D29327
llvm-svn: 293757
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
Differential Revision: https://reviews.llvm.org/D29129
llvm-svn: 293283
In a shared library an undefined symbol is implicitly imported. If the
symbol is called as a function a PLT entry is generated for it. When the
caller is a Thumb b.w a thunk to the PLT entry is needed as all PLT
entries are in ARM state.
This change allows undefined symbols to have thunks in the same way that
shared symbols may have thunks.
llvm-svn: 290951
StringRefZ is a class to represent a null-terminated string. String
length is computed lazily, so it's more efficient than StringRef to
represent strings in string table.
The motivation of defining this new class is to merge functions
that only differ in string types; we have many constructors that takes
`const char *` or `StringRef`. With StringRefZ, we can merge them.
Differential Revision: https://reviews.llvm.org/D27037
llvm-svn: 288172
Now that lld switched to lib/LTO, which always calls setDataLayout(),
we don't need this check anymore.
Thanks to Peter for pointing out!
llvm-svn: 287699
Previously, we do this piece of code to iterate over all input sections.
for (elf::ObjectFile<ELFT> *F : Symtab.getObjectFiles())
for (InputSectionBase<ELFT> *S : F->getSections())
It turned out that this mechanisms doesn't work well with synthetic
input sections because synthetic input sections don't belong to any
input file.
This patch defines a vector that contains all input sections including
synthetic ones.
llvm-svn: 286051
Previously, we have a lot of BumpPtrAllocators, but all these
allocators virtually have the same lifetime because they are
not freed until the linker finishes its job. This patch aggregates
them into a single allocator.
Differential revision: https://reviews.llvm.org/D26042
llvm-svn: 285452
We used to have one allocator per file, which reduces the advantage of
using an allocator in the first place.
This is a small speed up is most cases. The largest speedup was in
1.014X in chromium no-gc. The largest slowdown was scylla at 1.003X.
llvm-svn: 285205
Before the default was whatever number hardware_concurrency() returned.
Users can specify the number of threads via --lto-jobs=X option.
llvm-svn: 283787
We have a few "check" functions in Error.h. All of them are to
check for an error and strip an error object if there was no error,
except "void check(Error E)", which doesn't return anything.
This patch renames it and moves it to the .cpp file where it is used.
llvm-svn: 282764
I found out this wasn't tested when looking at Vedant's coverage bot
numbers, so, thanks to him. While I'm here, switch the error message
to be lld-compliant (first letter lowercase).
llvm-svn: 282335
Previously, all input files were owned by the symbol table.
Files were created at various places, such as the Driver, the lazy
symbols, or the bitcode compiler, and the ownership of new files
was transferred to the symbol table using std::unique_ptr.
All input files were then free'd when the symbol table is freed
which is on program exit.
I think we don't have to transfer ownership just to free all
instance at once on exit.
In this patch, all instances are automatically collected to a
vector and freed on exit. In this way, we no longer have to
use std::unique_ptr.
Differential Revision: https://reviews.llvm.org/D24493
llvm-svn: 281425
Before this lld was always creating common symbols itself. It worked,
but prevented them from being internalized when possible.
Now it preserves common symbols is the bitcode and they are internalized.
Fixes pr30184.
llvm-svn: 280242
Previously, each subclass of SymbolBody had a pointer to a source
file from which it was created. So, there was no single way to get
a source file for a symbol. We had getSourceFile<ELFT>(), but the
function was a bit inconvenient as it's a template.
This patch makes SymbolBody have a pointer to a source file.
If a symbol is not created from a file, the pointer has a nullptr.
llvm-svn: 275701
This fixes PR28218. Thanks to Rafael for spotting a failure in
the SHARED_LIBS build!
Differential Revision: http://reviews.llvm.org/D21577
llvm-svn: 273451
When we undefine, we also preserve type of symbol so that we get
it right in the combined LTO object.
Differential Revision: http://reviews.llvm.org/D20851
llvm-svn: 271403
This allows the combined LTO object to provide a definition with the same
name as a symbol that was internalized without causing a duplicate symbol
error. This normally happens during parallel codegen which externalizes
originally-internal symbols, for example.
In order to make this work, I needed to relax the undefined symbol error to
only report an error for symbols that are used in regular objects.
Differential Revision: http://reviews.llvm.org/D19954
llvm-svn: 268649
This patch implements a new design for the symbol table that stores
SymbolBodies within a memory region of the Symbol object. Symbols are mutated
by constructing SymbolBodies in place over existing SymbolBodies, rather
than by mutating pointers. As mentioned in the initial proposal [1], this
memory layout helps reduce the cache miss rate by improving memory locality.
Performance numbers:
old(s) new(s)
Without debug info:
chrome 7.178 6.432 (-11.5%)
LLVMgold.so 0.505 0.502 (-0.5%)
clang 0.954 0.827 (-15.4%)
llvm-as 0.052 0.045 (-15.5%)
With debug info:
scylla 5.695 5.613 (-1.5%)
clang 14.396 14.143 (-1.8%)
Performance counter results show that the fewer required indirections is
indeed the cause of the improved performance. For example, when linking
chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and
instructions per cycle increases from 0.78 to 0.83. We are also executing
many fewer instructions (15,516,401,933 down to 15,002,434,310), probably
because we spend less time allocating SymbolBodies.
The new mechanism by which symbols are added to the symbol table is by calling
add* functions on the SymbolTable.
In this patch, I handle local symbols by storing them inside "unparented"
SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating
these SymbolBodies, we can probably do that separately.
I also removed a few members from the SymbolBody class that were only being
used to pass information from the input file to the symbol table.
This patch implements the new design for the ELF linker only. I intend to
prepare a similar patch for the COFF linker.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html
Differential Revision: http://reviews.llvm.org/D19752
llvm-svn: 268178
Using multiple context used to be a really big memory saving because we
could free memory from each file while the linker proceeded with the
symbol resolution. We are getting lazier about reading data from the
bitcode, so I was curious if this was still a good tradeoff.
One thing that is a bit annoying is that we still have to copy the
symbol names. The problem is that the names are stored in the Module and
get freed when we move the module bits during linking.
Long term I think the solution is to add a symbol table to the bitcode.
That way IRObject file will not need to use a Module or a Context and we
can drop it while still keeping a StringRef to the names.
This patch is still be an interesting medium term improvement.
When linking llvm-as without debug info this patch is a small speedup:
master: 29.861877513 seconds
patch: 29.814533787 seconds
With debug info the numbers are
master: 34.765181469 seconds
patch: 34.563351584 seconds
The peak memory usage when linking llvm-as with debug info was
master: 599.10MB
patch: 600.13MB
llvm-svn: 267921
This patch is to remove -lto-no-discard-value-names flag and
instead to use -save-temps as we discussed in the post-commit
review thread for r267020.
Differential Revision: http://reviews.llvm.org/D19437
llvm-svn: 267230
These are properties of a symbol name, rather than a particular instance
of a symbol in an object file. We can simplify the code by collecting these
properties in Symbol.
The MustBeInDynSym flag has been renamed ExportDynamic, as its semantics
have been changed to be the same as those of --dynamic-list and
--export-dynamic-symbol, which do not cause hidden symbols to be exported.
Differential Revision: http://reviews.llvm.org/D19400
llvm-svn: 267183
Parallelism level can be chosen using the new --lto-jobs=K option
where K is the number of threads used for CodeGen. It currently
defaults to 1.
llvm-svn: 266484
Now MustBeInDynSym is only true if the symbol really must be in the
dynamic symbol table.
IsUsedInRegularObj is only true if the symbol is used in a .o or -u. Not
a .so or a .bc.
A benefit is that this is now done almost entirilly during symbol
resolution. The only exception is copy relocations because of aliases.
This includes a small fix in that protected symbols in .so don't force
executable symbols to be exported.
This also opens the way for implementing internalize for -shared.
llvm-svn: 265826
So, there are some cases when the IR Linker produces a broken
module (which doesn't pass the verifier) and we end up asserting
inside the verifier. I think it's always a bug producing a module
which does not pass the verifier but there are some cases in which
people can live with the broken module (e.g. if only DebugInfo
metadata are broken). The gold plugin has something similar.
This commit is motivated by a situation I found in the
wild. It seems that somebody else discovered it independently
and reported in PR24923.
llvm-svn: 265258
This fixes bootstrap of llvm-tblgen (with LTO) and PR27150.
Slightly longer explanation follows.
Emission of .init_array instead of .ctors is supported only on a
subset of the Target LLVM supports. Codegen needs to be conservative
and always emit .ctors unless instructed otherwise (based on target).
If the dynamic linker sees .init_array it completely ignores
what's inside .ctors and therefore some constructors are not called
(and this causes llvm-tblgen to crash on startup).
Teach LLD/LTO about the Codegen options so we end up always emitting
.init_array and avoid this issue.
In future, we might end up supporting mix of .ctors and .init_array
in different input files if this shows up as a real-world use case.
The way gold handles this case is mapping .ctors from input into
.init_array in output. There's also another caveat because
as far as I understand .ctors run in reverse order so when we do
the copy/mapping we need to reverse copy in the output if there's
more than one ctor. That's why I'd rather avoid this complicate logic
unless there's a real need.
An analogous reasoning holds for .dtors/.fini_array.
llvm-svn: 265085
IPO doesn't work very well across symbols referenced
by others TUs. The linker here tries to evaluate
which symbols are safe to internalize and switches
their linkage.
Differential Revision: http://reviews.llvm.org/D18415
llvm-svn: 264585
Ensure we keep the symbol we need to before it reaches
the Writer (and hit an assertion), changing its linkage
from linkonce_odr to weak. For a more detailed description
of the problem, see PR19901 where a similar problem was
fixed for the gold plugin. Thanks to Rafael for providing
a testcase.
llvm-svn: 264111
The code for LTO has been growing, so now is probably a good time to
move it to its own file. SymbolTable.cpp is for symbol table, and
because compiling bitcode files are semantically not a part of
symbol table, this is I think a good thing to do.
http://reviews.llvm.org/D18370
llvm-svn: 264091