This can happen as long as the instruction is not reachable. Instcombine does generate these unreachable malformed selects when doing RAUW
llvm-svn: 160874
%shr = lshr i64 %key, 3
%0 = load i64* %val, align 8
%sub = add i64 %0, -1
%and = and i64 %sub, %shr
ret i64 %and
to:
%shr = lshr i64 %key, 3
%0 = load i64* %val, align 8
%sub = add i64 %0, 2305843009213693951
%and = and i64 %sub, %shr
ret i64 %and
The demanded bit optimization is actually a pessimization because add -1 would
be codegen'ed as a sub 1. Teach the demanded constant shrinking optimization
to check for negated constant to make sure it is actually reducing the width
of the constant.
rdar://11793464
llvm-svn: 160101
This patch removes ~70 lines in InstCombineLoadStoreAlloca.cpp and makes both functions a bit more aggressive than before :)
In theory, we can be more aggressive when removing an alloca than a malloc, because an alloca pointer should never escape, but we are not taking advantage of this anyway
llvm-svn: 159952
This means we can do cheap DSE for heap memory.
Nothing is done if the pointer excapes or has a load.
The churn in the tests is mostly due to objectsize, since we want to make sure we
don't delete the malloc call before evaluating the objectsize (otherwise it becomes -1/0)
llvm-svn: 159876
This was always part of the VMCore library out of necessity -- it deals
entirely in the IR. The .cpp file in fact was already part of the VMCore
library. This is just a mechanical move.
I've tried to go through and re-apply the coding standard's preferred
header sort, but at 40-ish files, I may have gotten some wrong. Please
let me know if so.
I'll be committing the corresponding updates to Clang and Polly, and
Duncan has DragonEgg.
Thanks to Bill and Eric for giving the green light for this bit of cleanup.
llvm-svn: 159421
// C - zext(bool) -> bool ? C - 1 : C
if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
if (ZI->getSrcTy()->isIntegerTy(1))
return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
This ends up forming sext i1 instructions that codegen to terrible code. e.g.
int blah(_Bool x, _Bool y) {
return (x - y) + 1;
}
=>
movzbl %dil, %eax
movzbl %sil, %ecx
shll $31, %ecx
sarl $31, %ecx
leal 1(%rax,%rcx), %eax
ret
Without the rule, llvm now generates:
movzbl %sil, %ecx
movzbl %dil, %eax
incl %eax
subl %ecx, %eax
ret
It also helps with ARM (and pretty much any target that doesn't have a sext i1 :-).
The transformation was done as part of Eli's r75531. He has given the ok to
remove it.
rdar://11748024
llvm-svn: 159230
merge all zero-sized alloca's into one, fixing c43204g from the Ada ACATS
conformance testsuite. What happened there was that a variable sized object
was being allocated on the stack, "alloca i8, i32 %size". It was then being
passed to another function, which tested that the address was not null (raising
an exception if it was) then manipulated %size bytes in it (load and/or store).
The optimizers cleverly managed to deduce that %size was zero (congratulations
to them, as it isn't at all obvious), which made the alloca zero size, causing
the optimizers to replace it with null, which then caused the check mentioned
above to fail, and the exception to be raised, wrongly. Note that no loads
and stores were actually being done to the alloca (the loop that does them is
executed %size times, i.e. is not executed), only the not-null address check.
llvm-svn: 159202
- simplifycfg: invoke undef/null -> unreachable
- instcombine: invoke new -> invoke expect(0, 0) (an arbitrary NOOP intrinsic; only done if the allocated memory is unused, of course)
- verifier: allow invoke of intrinsics (to make the previous step work)
llvm-svn: 159146
This fixes PR5997.
These transforms were disabled because codegen couldn't deal with other
uses of trunc(x). This is now handled by the peephole pass.
This causes no regressions on x86-64.
llvm-svn: 159003
- provide more extensive set of functions to detect library allocation functions (e.g., malloc, calloc, strdup, etc)
- provide an API to compute the size and offset of an object pointed by
Move a few clients (GVN, AA, instcombine, ...) to the new API.
This implementation is a lot more aggressive than each of the custom implementations being replaced.
Patch reviewed by Nick Lewycky and Chandler Carruth, thanks.
llvm-svn: 158919
This saves a cast, and zext is more expensive on platforms with subreg support
than trunc is. This occurs in the BSD implementation of memchr(3), see PR12750.
On the synthetic benchmark from that bug stupid_memchr and bsd_memchr have the
same performance now when not inlining either function.
stupid_memchr: 323.0us
bsd_memchr: 321.0us
memchr: 479.0us
where memchr is the llvm-gcc compiled bsd_memchr from osx lion's libc. When
inlining is enabled bsd_memchr still regresses down to llvm-gcc memchr time,
I haven't fully understood the issue yet, something is grossly mangling the
loop after inlining.
llvm-svn: 158297
-%a + 42
into
42 - %a
previously we were emitting:
-(%a + 42)
This fixes the infinite loop in PR12338. The generated code is still not perfect, though.
Will work on that next
llvm-svn: 158237
The test case feeds the following into InstCombine's visitSelect:
%tobool8 = icmp ne i32 0, 0
%phitmp = select i1 %tobool8, i32 3, i32 0
Then instcombine replaces the right side of the switch with 0, doesn't notice
that nothing changes and tries again indefinitely.
This fixes PR12897.
llvm-svn: 157587
refactor code a bit to enable future changes to support run-time information
add support to compute allocation sizes at run-time if penalty > 1 (e.g., malloc(x), calloc(x, y), and VLAs)
llvm-svn: 156515
<rdar://problem/11291436>.
This is a second attempt at a fix for this, the first was r155468. Thanks
to Chandler, Bob and others for the feedback that helped me improve this.
llvm-svn: 155866
Original commit message:
Defer some shl transforms to DAGCombine.
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
llvm-svn: 155362
While the patch was perfect and defect free, it exposed a really nasty
bug in X86 SelectionDAG that caused an llc crash when compiling lencod.
I'll put the patch back in after fixing the SelectionDAG problem.
llvm-svn: 155181
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
llvm-svn: 155136
GEPs, bit casts, and stores reaching it but no other instructions. These
often show up during the iterative processing of the inliner, SROA, and
DCE. Once we hit this point, we can completely remove the alloca. These
were actually showing up in the final, fully optimized code in a bunch
of inliner tests I've been working on, and notably they show up after
LLVM finishes optimizing away all function calls involved in
hash_combine(a, b).
llvm-svn: 154285