were lacking ExprWithCleanups nodes in some cases where the new approach to
lifetime extension needed them).
Original commit message:
Rework IR emission for lifetime-extended temporaries. Instead of trying to walk
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183859
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183721
No functionality change. CGCleanup.cpp provides the implementation for
EHScopeStack, so it seems more consistent to place the class definition
in CGCleanup.h.
This should also help solve a header ordering problem that I have.
llvm-svn: 183631
Two variables with the same name declared in two if conditions in the same
scope are no longer coalesced into one.
rdar://problem/14024005
llvm-svn: 183597
- factor the name construction part out from constructSetterName
- rename constructSetterName to the more appropriate constructSetterSelector
no functionality change intended.
rdar://problem/14035789
llvm-svn: 183582
X86's 'y' inline assembly constraint represents an MMX register, this change
prevents Clang from hitting an assertion when passed an incompatible type to
deal with.
llvm-svn: 183467
There seems to have been some erroneous code attempting to describe the
ABI of parameters (non-trivial record parameters are passed by
reference). This would break the type of the function (especially when
it caused a mismatch between the type of a declaration & a definition)
causing PR14763 and PR14645.
llvm-svn: 183329
Also addresses a review comment from John from on r180985 by removing
the "== -1" check, since it's now reusing the correct code which has the
comment.
llvm-svn: 183318
In an effort to make -flimit-debug-info more consistent I over-shot the
mark & made types used via typedefs never produce definitions in the
debug info (even if the type was used in a way that would require a
definition).
The fix for this is to do exactly what I was hoping to do at some point
- plumb the declaration/definition choice through the various layers of
"CreateType" in CGDebugInfo. In this way we can produce declarations
whenever they are sufficient & definitions otherwise - including when
qualifiers are used, for example (discovered in PR14467). This may not
be complete (there may be other types/situations where we need to
propagate the "declaration/definition" choice) but it lays the basic
foundation which we can enhance in future iterations.
llvm-svn: 183296
This could actually be implemented with the LLVM IR va_arg instruction,
but it doesn't seem to offer any advantages over accessing the va_list
pointer directly.
Using the va_list pointer directly makes it possible to perform type
coercion directly from the argument array, and the va_list updates are
exposed to the optimizers.
llvm-svn: 183292
Type coercion for argument passing is equivalent to storing the source
type and loading the destination type from the same pointer. On
big-endian targets, this means that the high bits of integers are
preserved.
This patch fixes the CoerceIntOrPtrToIntOrPtr() function on big-endian
targets by inserting the required shift instructions to preserve the
high bits instead of the low bits.
This is used by SparcABIInfo when passing small structs in the high bits
of registers.
llvm-svn: 183291
The 'inreg' attribute can also be applied to function return values in
LLVM IR. The SPARC v9 backend is using the flag when returning structs
containing 32-bit floats.
llvm-svn: 183290
handle temporaries which have been lifetime-extended to static storage duration
within constant expressions. This correctly handles nested lifetime extension
(through reference members of aggregates in aggregate initializers) but
non-constant-expression emission hasn't yet been updated to do the same.
llvm-svn: 183283
For integer types of sizes 1, 2, 4 and 8, libcompiler-rt (and libgcc)
provide atomic functions that pass parameters by value and return
results directly.
libgcc and libcompiler-rt only provide optimized libcalls for
__atomic_fetch_*, as generic libcalls on non-integer types would make
little sense. This means that we can finally make __atomic_fetch_* work
on architectures for which we don't provide these operations as builtins
(e.g. ARM).
This should fix the dreaded "cannot compile this atomic library call
yet" error that would pop up once every while.
llvm-svn: 183033
While we can't yet emit vbtables, this allows us to find virtual bases
of objects constructed in other TUs.
This make iostream hello world work, since basic_ostream virtually
inherits from basic_ios.
Differential Revision: http://llvm-reviews.chandlerc.com/D795
llvm-svn: 182870
The coercion type serves two purposes:
1. Pad structs to a multiple of 64 bits, so they are passed
'left-aligned' in registers.
2. Expose aligned floating point elements as first-level elements, so
the code generator knows to pass them in floating point registers.
We also compute the InReg flag which indicates that the struct contains
aligned 32-bit floats. This flag is used by the code generator to pick
the right registers.
llvm-svn: 182753
- All integer arguments smaller than 64 bits are extended.
- Large structs are passed indirectly, not using 'byval'.
- Structs up to 32 bytes in size are returned in registers.
Some things are not implemented yet:
- EmitVAArg can be implemented in terms of the va_arg instruction.
- When structs are passed in registers, float members require special
handling because they are passed in the floating point registers.
- Structs are left-aligned when passed in registers. This may require
padding.
llvm-svn: 182745
John noticed that the fix for pr15930 (r181981) didn't handle indirect
uses of local types. For example, a pointer to local struct, or a
function that returns it.
One way to implement this would be to recursively look for local
types. This would look a lot like the linkage computation itself for
types.
To avoid code duplication and utilize the existing linkage cache, this
patch just makes the computation of "type with no linkage but
externally visible because it is from an inline function" part of the
linkage computation itself.
llvm-svn: 182711
To make this more consistent with 'getOrCreateType' & clarify the
distinction between the two. The only thing I couldn't quite communicate
in the name is that getOrCreateTypeDeclaration may actually produce a
full definition (in -fno-limit-debug-info) but the point is to call it
whenever only a declaration is needed & the implementation can choose
whether to provide a declaration or definition.
(also, unfortunately, getOrCreateType can produce declarations too - we
should sure this up by making it not do that - any caller that can
tolerate a declaration should be calling getOrCreateTypeDeclaration
instead)
llvm-svn: 182674
Perhaps we should just suppress this, rather than erroring, but since we
have the infrastructure for it I figured I'd use it - if this is
determined to be not the right thing we should probably remove that
infrastructure entirely. I guess it's lying around from the early days
of implementing debug info support.
llvm-svn: 182673
This removes a FIXME in CodeGenModule::SetLLVMFunctionAttributesForDefinition.
When a function is declared cold we can now generate the IR attribute in
addition to marking the function to be optimized for size.
I tried adding a separate CHECK in the existing test, but it was
failing. I suppose CHECK matches one line exactly once? This would be
a problem if the attributes are listed in a different order, though they
seem to be sorted.
llvm-svn: 182666