of loops.
Previously, two consecutive calls to function "func" would result in the
following sequence of instructions:
1. load $16, %got(func)($gp) // load address of lazy-binding stub.
2. move $25, $16
3. jalr $25 // jump to lazy-binding stub.
4. nop
5. move $25, $16
6. jalr $25 // jump to lazy-binding stub again.
With this patch, the second call directly jumps to func's address, bypassing
the lazy-binding resolution routine:
1. load $25, %got(func)($gp) // load address of lazy-binding stub.
2. jalr $25 // jump to lazy-binding stub.
3. nop
4. load $25, %got(func)($gp) // load resolved address of func.
5. jalr $25 // directly jump to func.
llvm-svn: 191591
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
llvm-svn: 191514
Most constant BUILD_VECTOR's are matched using ComplexPatterns which cover
bitcasted as well as normal vectors. However, it doesn't seem to be possible to
match ldi.[bhwd] in a type-agnostic manner (e.g. to support the widest range of
immediates, it should be possible to use ldi.b to load v2i64) using TableGen so
ldi.[bhwd] is matched using custom code in MipsSEISelDAGToDAG.cpp
This made the majority of the constant splat BUILD_VECTOR lowering redundant.
The only transformation remaining for constant splats is when an (up-to) 32-bit
constant splat is possible but the value does not fit into a 10-bit signed
integer. In this case, the BUILD_VECTOR is transformed into a bitcasted
BUILD_VECTOR so that fill.[bhw] can be used to splat the vector from a GPR32
register (which is initialized using the usual lui/addui sequence).
There are no additional tests since this is a re-implementation of previous
functionality. The change is intended to make it easier to implement some of
the upcoming instruction selection patches since they can rely on existing
support for BUILD_VECTOR's in the DAGCombiner.
compare_float.ll changed slightly because a BITCAST is no longer
introduced during legalization.
llvm-svn: 191299
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
llvm-svn: 191199
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
llvm-svn: 191191
1) make sure that the first two instructions of the sequence cannot
separate from each other. The linker requires that they be sequential.
If they get separated, it can still work but it will not work in all
cases because the first of the instructions mostly involves the hi part
of the pc relative offset and that part changes slowly. You would have
to be at the right boundary for this to matter.
2) make sure that this sequence begins on a longword boundary.
There appears to be a bug in binutils which makes some of these calculations
get messed up if the instruction sequence does not begin on a longword
boundary. This is being investigated with the appropriate binutils folks.
llvm-svn: 190966
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
llvm-svn: 190235
don't exist in libc. This is really not the right way to solve this problem;
but it's not clear to me at this time exactly what is the right way.
If we create stubs here, they will cause link errors because these functions
do not exist in libc.
llvm-svn: 189727
has hard float, when you compile the mips32 code you have to make sure
that it knows to compile any mips32 routines as hard float. I need to clean
up the way mips16 hard float is specified but I need to first think through
all the details. Mips16 always has a form of soft float, the difference being
whether the underlying hardware has floating point. So it's not really
necessary to pass the -soft-float to llvm since soft-float is always true
for mips16 by virtue of the fact that it will not register floating point
registers. By using this fact, I can simplify the way this is all handled.
llvm-svn: 189690
These intrinsics are legalized to V(ALL|ANY)_(NON)?ZERO nodes,
are matched as SN?Z_[BHWDV]_PSEUDO pseudo's, and emitted as
a branch/mov sequence to evaluate to 0 or 1.
Note: The resulting code is sub-optimal since it doesnt seem to be possible
to feed the result of an intrinsic directly into a brcond. At the moment
it uses (SETCC (VALL_ZERO $ws), 0, SETEQ) and similar which unnecessarily
evaluates the boolean twice.
llvm-svn: 189478
The MSA control registers have been added as reserved registers,
and are only used via ISD::Copy(To|From)Reg. The intrinsics are lowered
into these nodes.
llvm-svn: 189468
Note that all of these tests use ld.b and st.b for the loads and stores
regardless of the data size. This is because the definition of bitcast is
equivalent to a store/load sequence and DAG combiner accordingly folds bitcasts
to/from v16i8 into the load/store nodes to product load/store nodes with
type v16i8.
llvm-svn: 189333
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted
Resubmit this patch. The target triple needs to be added to the test so that
clang does not tell the backend the wrong target when the host is BSD. There
is a clang bug in here somewhere that I need to track down. At Mips this
has been filed internally as a bug.
llvm-svn: 189186
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted.
llvm-svn: 189161
functions be compiled as mips32, without having to add attributes. This
is useful in certain situations where you don't want to have to edit the
function attributes in the source. For now it's only an option used for
the compiler developers when debugging the mips16 port.
llvm-svn: 188826
This regards how mips16 is viewed. It's not really a target type but
there has always been a target for it in the td files. It's more properly
-mcpu=mips32 -mattr=+mips16 . This is how clang treats it but we have
always had the -mcpu=mips16 which I probably should delete now but it will
require updating all the .ll test cases for mips16. In this case it changed
how we decide if we have a count bits instruction and whether instruction
lowering should then expand ctlz. Now that we have dual mode compilation,
-mattr=+mips16 really just indicates the inital processor mode that
we are compiling for. (It is also possible to have -mcpu=64 -mattr=+mips16
but as far as I know, nobody has even built such a processor, though there
is an architecture manual for this).
llvm-svn: 188586
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
is actually an instrinsic that will not occur in libc. This list here
is not exhaustive but fixes the one places in test-suite where this occurs.
I have filed a bug against myself to research the full list and add them
to the array of such cases. In the future, actual stub generation will occur
in a later phase and we won't need this code because we will know at that time
during the compilation that in fact no helper function was even needed.
llvm-svn: 188149
I need to go through all the runtime routine list and see if there
are any more I need to add for mips16 floating point. Prototypes must
be correct or else I don't know to add a helper function call.
llvm-svn: 188106
helper functions. This can be optimized out later when the remaining
parts of the helper function work is moved into the Mips16HardFloat pass.
For now it forces us to use the 32 bit save/restore instructions instead
of the 16 bit ones.
llvm-svn: 187712
This is actually an LLVM bug in the way it generates signatures for these
when soft float is enabled. For example, floor ends up having the signature
of int64(int64). The signature part is not the same as where the actual
parameter types are recorded, and those ARE of course int64(int64) when
soft float is enabled. (Yes, Mips16 hard float uses soft float but with
different runtime rounes but then has to interoperate with Mips32 using
normal floating point). This logic will eventually be moved to the
Mips16HardFloat pass so it's not worth sorting out these issues in LLVM
since nobody but Mips16 cares about these signatures, as far as I know,
and even I won't eventually either.
llvm-svn: 187613
Also avoid locals evicting locals just because they want a cheaper register.
Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.
A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.
Other beneficial side effects:
It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.
Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).
Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.
llvm-svn: 187139
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
llvm-svn: 186258
The pass emits a call to sqrt that has attribute "read-none". This call will be
converted to an ISD::FSQRT node during DAG construction, which will turn into
a mips native sqrt instruction.
llvm-svn: 183802
the Mips16 port. A few of the psuedos could either take signed
or unsigned arguments and I did not distinguish the case and improperly
rejected some valid cases that the assembler had previously accepted
when they were pure pseudos that expanded as assembly instructions.
llvm-svn: 183633
Fix an assertion when the compiler encounters big constants whose bit width is
not a multiple of 64-bits.
Although clang would never generate something like this, the backend should be
able to handle any legal IR.
<rdar://problem/13363576>
llvm-svn: 183544
pic calls. These need to be there so we don't try and use helper
functions when we call those.
As part of this, make sure that we properly exclude helper functions in pic
mode when indirect calls are involved.
llvm-svn: 182343
By default, a teq instruction is inserted after integer divide. No divide-by-zero
checks are performed if option "-mnocheck-zero-division" is used.
llvm-svn: 182306
Previously, three instructions were needed:
trunc.w.s $f0, $f2
mfc1 $4, $f0
sw $4, 0($2)
Now we need only two:
trunc.w.s $f0, $f2
swc1 $f0, 0($2)
llvm-svn: 182053
This creates stubs that help Mips32 functions call Mips16
functions which have floating point parameters that are normally passed
in floating point registers.
llvm-svn: 181972
Mips16/32 floating point interoperability.
When Mips16 code calls external functions that would normally have some
of its parameters or return values passed in floating point registers,
it needs (Mips32) helper functions to do this because while in Mips16 mode
there is no ability to access the floating point registers.
In Pic mode, this is done with a set of predefined functions in libc.
This case is already handled in llvm for Mips16.
In static relocation mode, for efficiency reasons, the compiler generates
stubs that the linker will use if it turns out that the external function
is a Mips32 function. (If it's Mips16, then it does not need the helper
stubs).
These stubs are identically named and the linker knows about these tricks
and will not create multiple copies and will delete them if they are not
needed.
llvm-svn: 181753
This option is used when the user wants to avoid emitting double precision FP
loads and stores. Double precision FP loads and stores are expanded to single
precision instructions after register allocation.
llvm-svn: 181718
mips16/mips32 floating point interoperability.
This patch fixes returns from mips16 functions so that if the function
was in fact called by a mips32 hard float routine, then values
that would have been returned in floating point registers are so returned.
Mips16 mode has no floating point instructions so there is no way to
load values into floating point registers.
This is needed when returning float, double, single complex, double complex
in the Mips ABI.
Helper functions in libc for mips16 are available to do this.
For efficiency purposes, these helper functions have a different calling
convention from normal Mips calls.
Registers v0,v1,a0,a1 are used to pass parameters instead of
a0,a1,a2,a3.
This is because v0,v1,a0,a1 are the natural registers used to return
floating point values in soft float. These values can then be moved
to the appropriate floating point registers with no extra cost.
The only register that is modified is ra in this call.
The helper functions make sure that the return values are in the floating
point registers that they would be in if soft float was not in effect
(which it is for mips16, though the soft float is implemented using a mips32
library that uses hard float).
llvm-svn: 181641
its fields.
This removes false dependencies between DSP instructions which access different
fields of the the control register. Implicit register operands are added to
instructions RDDSP and WRDSP after instruction selection, depending on the
value of the mask operand.
llvm-svn: 181041
register.
- Define pseudo instructions which store or load ccond field of the DSP
control register.
- Emit the pseudos in MipsSEInstrInfo::storeRegToStack and loadRegFromStack.
- Expand the pseudos before callee-scan save.
- Emit instructions RDDSP or WRDSP to copy between ccond field and GPRs.
llvm-svn: 180969
Expand copy instructions between two accumulator registers before callee-saved
scan is done. Handle copies between integer GPR and hi/lo registers in
MipsSEInstrInfo::copyPhysReg. Delete pseudo-copy instructions that are not
needed.
llvm-svn: 180827
Mips32 code as Mips16 unless it can't be compiled as Mips 16. For now this
would happen as long as floating point instructions are not needed.
Probably it would also make sense to compile as mips32 if atomic operations
are needed too. There may be other cases too.
A module pass prescans the IR and adds the mips16 or nomips16 attribute
to functions depending on the functions needs.
Mips 16 mode can result in a 40% code compression by utililizing 16 bit
encoding of many instructions.
The hope is for this to replace the traditional gcc way of dealing with
Mips16 code using floating point which involves essentially using soft float
but with a library implemented using mips32 floating point. This gcc
method also requires creating stubs so that Mips32 code can interact with
these Mips 16 functions that have floating point needs. My conjecture is
that in reality this traditional gcc method would never win over this
new method.
I will be implementing the traditional gcc method also. Some of it is already
done but I needed to do the stubs to finish the work and those required
this mips16/32 mixed mode capability.
I have more ideas for to make this new method much better and I think the old
method will just live in llvm for anyone that needs the backward compatibility
but I don't for what reason that would be needed.
llvm-svn: 179185
Modifier 'D' is to use the second word of a double integer.
We had previously implemented the pure register varient of
the modifier and this patch implements the memory reference.
#include "stdio.h"
int b[8] = {0,1,2,3,4,5,6,7};
void main()
{
int i;
// The first word. Notice, no 'D'
{asm (
"lw %0,%1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
// The second word
{asm (
"lw %0,%D1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
}
llvm-svn: 179135
and mips16 on a per function basis.
Because this patch is somewhat involved I have provide an overview of the
key pieces of it.
The patch is written so as to not change the behavior of the non mixed
mode. We have tested this a lot but it is something new to switch subtargets
so we don't want any chance of regression in the mainline compiler until
we have more confidence in this.
Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1.
For that reason there are derived versions of the register info, frame info,
instruction info and instruction selection classes.
Now we register three separate passes for instruction selection.
One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then
one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and
MipsSEISelDAGToDAG.cpp).
When the ModuleISel pass runs, it determines if there is a need to switch
subtargets and if so, the owning pointers in MipsTargetMachine are
appropriately changed.
When 16Isel or SEIsel is run, they will return immediately without doing
any work if the current subtarget mode does not apply to them.
In addition, MipsAsmPrinter needs to be reset on a function basis.
The pass BasicTargetTransformInfo is substituted with a null pass since the
pass is immutable and really needs to be a function pass for it to be
used with changing subtargets. This will be fixed in a follow on patch.
llvm-svn: 179118
This patch initializes t9 to the handler address, but only if the relocation
model is pic. This handles the case where handler to which eh.return jumps
points to the start of the function.
Patch by Sasa Stankovic.
llvm-svn: 178588
derived class MipsSETargetLowering.
We shouldn't be generating madd/msub nodes if target is Mips16, since Mips16
doesn't have support for multipy-add/sub instructions.
llvm-svn: 178404
Apparently my final cleanup to use a relevant suffix for these tests before
committing r176831 caused them to stop running since lit wasn't configured to
run tests with that suffix in those directories (why don't we just have a
global suffix list?). So, add the suffix to the relevant directories & fix the
test that has bitrotted over the last week due to my debug info schema changes.
llvm-svn: 177315