64-bit MMX constant generation usually ends up lowering into SSE instructions before being spilled/reloaded as a MMX type.
This patch bitcasts the constant to a double value to allow correct loading directly to the MMX register.
I've added MMX constant asm comment support to improve testing, it's better to always print the double values as hex constants as MMX is mainly an integer unit (and even with 3DNow! its just floats).
Differential Revision: https://reviews.llvm.org/D43616
llvm-svn: 326497
`llc -march` is problematic because it only switches the target
architecture, but leaves the operating system unchanged. This
occasionally leads to indeterministic tests because the OS from
LLVM_DEFAULT_TARGET_TRIPLE is used.
However we can simply always use `llc -mtriple` instead. This changes
all the tests to do this to avoid people using -march when they copy and
paste parts of tests.
See also the discussion in https://reviews.llvm.org/D35287
llvm-svn: 309774
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
llvm-svn: 150226
The x86_mmx type is used for MMX intrinsics, parameters and
return values where these use MMX registers, and is also
supported in load, store, and bitcast.
Only the above operations generate MMX instructions, and optimizations
do not operate on or produce MMX intrinsics.
MMX-sized vectors <2 x i32> etc. are lowered to XMM or split into
smaller pieces. Optimizations may occur on these forms and the
result casted back to x86_mmx, provided the result feeds into a
previous existing x86_mmx operation.
The point of all this is prevent optimizations from introducing
MMX operations, which is unsafe due to the EMMS problem.
llvm-svn: 115243
optimization level.
This only really affects llc for now because both the llvm-gcc and clang front
ends override the default register allocator. I intend to remove that code later.
llvm-svn: 104904