A new function getOpcodeForSpill should now be the only place to get
the opcode for a given spilled register.
Differential Revision: https://reviews.llvm.org/D43086
llvm-svn: 328556
This patch adds new load/store instructions for integer scalar types
which can be used for X-Form when fed by add with an @tls relocation.
Differential Revision: https://reviews.llvm.org/D43315
llvm-svn: 327635
This patch adds the necessary infrastructure to convert instructions that
take two register operands to those that take a register and immediate if
the necessary operand is produced by a load-immediate. Furthermore, it uses
this infrastructure to perform such conversions twice - first at MachineSSA
and then pre-emit.
There are a number of reasons we may end up with opportunities for this
transformation, including but not limited to:
- X-Form instructions chosen since the exact offset isn't available at ISEL time
- Atomic instructions with constant operands (we will add patterns for this
in the future)
- Tail duplication may duplicate code where one block contains this redundancy
- When emitting compare-free code in PPCDAGToDAGISel, we don't handle constant
comparands specially
Furthermore, this patch moves the initialization of PPCMIPeepholePass so that
it can be used for MIR tests.
llvm-svn: 320791
MIR SRADI uses instruction template XSForm_1rc which declares Defs = [CARRY]. But MIR SRADI_32 uses instruction template XSForm_1, and it doesn't declare such implicit definition. With patch D33720 it causes wrong code generation for perl.
This patch adds the implicit definition.
Differential Revision: https://reviews.llvm.org/D35699
llvm-svn: 308780
Define target hook isReallyTriviallyReMaterializable() to explicitly specify
PowerPC instructions that are trivially rematerializable. This will allow
the MachineLICM pass to accurately identify PPC instructions that should always
be hoisted.
Differential Revision: https://reviews.llvm.org/D34255
llvm-svn: 305932
Summary:
This is my misunderstanding on isBarrier. It's not for memory barriers,
but for other control flow purposes. lwsync doesn't have it either.
This fixes a simple crash with -verify-machineinstrs like below:
define void @Foo() {
entry:
%tmp = load atomic i64, i64* undef acquire, align 8
unreachable
}
I deliberately don't want to check in the test, since there is little
chance to regress on such a mistake. Such a test adds noise to the code
base.
I plan to check in first, since it fixes a crash, and the fix is obvious.
Reviewers: kbarton, echristo
Subscribers: sanjoy, nemanjai, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34314
llvm-svn: 305624
Note that if we need the result of both the divide and the modulo then we
compute the modulo based on the result of the divide and not using the new
hardware instruction.
Commit on behalf of STEFAN PINTILIE.
Differential Revision: https://reviews.llvm.org/D33940
llvm-svn: 305210
This patch builds upon https://reviews.llvm.org/rL302810 to add
handling for bitwise logical operations in general purpose registers.
The idea is to keep the values in GPRs as long as possible - only
extracting them to a condition register bit when no further operations
are to be done.
Differential Revision: https://reviews.llvm.org/D31851
llvm-svn: 304282
PPC::GETtlsADDR is lowered to a branch and a nop, by the assembly
printer. Its size was incorrectly marked as 4, correct it to 8. The
incorrect size can cause incorrect branch relaxation in
PPCBranchSelector under the right conditions.
llvm-svn: 303904
Summary:
This fixes pr32392.
The lowering pipeline is:
llvm.ppc.cfence in IR -> PPC::CFENCE8 in isel -> Actual instructions in
expandPostRAPseudo.
The reason why expandPostRAPseudo is chosen is because previous passes
are likely eliminating instructions like cmpw 3, 3 (early CSE) and bne-
7, .+4 (some branch pass(s)).
Differential Revision: https://reviews.llvm.org/D32763
llvm-svn: 303205
This patch is the first in a series of patches to provide code gen for
doing compares in GPRs when the compare result is required in a GPR.
It adds the infrastructure to select GPR sequences for i1->i32 and i1->i64
extensions. This first patch handles equality comparison on i32 operands with
the result sign or zero extended.
Differential Revision: https://reviews.llvm.org/D31847
llvm-svn: 302810
Provide a 64-bit pattern to use SUBFIC for subtracting from a 16-bit immediate.
The corresponding pattern already exists for 32-bit integers.
Committing on behalf of Hiroshi Inoue.
Differential Revision: https://reviews.llvm.org/D29387
llvm-svn: 296144
1) Explicitly sets mayLoad/mayStore property in the tablegen files on load/store
instructions.
2) Updated the flags on a number of intrinsics indicating that they write
memory.
3) Added SDNPMemOperand flags for some target dependent SDNodes so that they
propagate their memory operand
Review: https://reviews.llvm.org/D28818
llvm-svn: 293200
Fix PR27943 "Bad machine code: Using an undefined physical register".
SUBFC8 implicitly defines the CR0 register, but this was omitted in
the instruction definition.
Patch by Jameson Nash <jameson@juliacomputing.com>
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D20802
llvm-svn: 271425
Revert "[Power9] Implement add-pc, multiply-add, modulo, extend-sign-shift, random number, set bool, and dfp test significance".
This patch has caused a functional regression in SPEC2k6 namd, and a performance regression in mesa-pipe.
llvm-svn: 267927
ADD8TLS, a variant of add instruction used for initial-exec TLS,
currently accepts r0 as a source register. While add itself supports
r0 just fine, linker can relax it to a local-exec sequence, converting
it to addi - which doesn't support r0.
Differential Revision: http://reviews.llvm.org/D19193
llvm-svn: 267388
This patch corresponds to review:
http://reviews.llvm.org/D17850
This patch implements the following instructions:
cmprb, cmpeqb, cnttzw, cnttzw., cnttzd, cnttzd.
llvm-svn: 266228
This patch implements the following BookII and Book III instructions:
- copy copy_first cp_abort paste paste. paste_last
- msgsync
- slbieg slbsync
- stop
Total 10 instructions
Reviewers: nemanjai hfinkel tjablin amehsan kbarton
llvm-svn: 265504
This patch corresponds to review:
http://reviews.llvm.org/D18032
This patch provides asm implementation for the following instructions:
lwat, ldat, stwat, stdat, ldmx, mcrxrx
llvm-svn: 265022
This patch corresponds to review:
http://reviews.llvm.org/D15930
Moves to and from CR fields depend on shifts/masks that depend on the
target/source CR field. Thus, post-ra anti-dep breaking must not later
change that CR register assignment.
llvm-svn: 257168
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
This is the patch corresponding to review:
http://reviews.llvm.org/D8406
It adds some missing instructions from ISA 2.06 to the PPC back end.
llvm-svn: 234546
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], but currently only the
'PowerPC HTM Low Level Built-in Function' are implemented.
The HTM instructions follows the RC ones and the transaction initiation result
is set on RC0 (with exception of tcheck). Currently approach is to create a
register copy from CR0 to GPR and comapring. Although this is suboptimal, since
the branch could be taken directly by comparing the CR0 value, it generates code
correctly on both test and branch and just return value. A possible future
optimization could be elimitate the MFCR instruction to branch directly.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a clang patch to enabled the builtins and option switch.
[1] https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8247
llvm-svn: 233204
The PowerPC backend had a number of loads that were marked as canFoldAsLoad
(and I'm partially at fault here for copying around the relevant line of
TableGen definitions without really looking at what it meant). This is not
right; PPC (non-memory) instructions don't support direct memory operands, and
so there is nothing a 'foldable' instruction could be folded into.
Noticed by inspection, no test case.
The one thing we might lose by doing this is ability to fold some loads into
stackmap/patchpoint pseudo-instructions. However, this was untested, and would
not obviously have worked for extending loads, and I'd rather re-add support
for that once it can be tested.
llvm-svn: 231982
We had somehow accumulated a few target-specific SDAG nodes dealing with PPC64
TOC access that were referenced only in TableGen patterns. The associated
(pseudo-)instructions are used, but are being generated directly. NFC.
llvm-svn: 230518
See full discussion in http://reviews.llvm.org/D7491.
We now hide the add-immediate and call instructions together in a
separate pseudo-op, which is tagged to define GPR3 and clobber the
call-killed registers. The PPCTLSDynamicCall pass prior to RA now
expands this op into the two separate addi and call ops, with explicit
definitions of GPR3 on both instructions, and explicit clobbers on the
call instruction. The pass is now marked as requiring and preserving
the LiveIntervals and SlotIndexes analyses, and fixes these up after
the replacement sequences are introduced.
Self-hosting has been verified on LE P8 and BE P7 with various
optimization levels, etc. It has also been verified with the
--no-tls-optimize flag workaround removed.
llvm-svn: 228725
Unfortunately, even with the workaround of disabling the linker TLS
optimizations in Clang restored (which has already been done), this still
breaks self-hosting on my P7 machine (-O3 -DNDEBUG -mcpu=native).
Bill is currently working on an alternate implementation to address the TLS
issue in a way that also fully elides the linker bug (which, unfortunately,
this approach did not fully), so I'm reverting this now.
llvm-svn: 228460
This patch is a third attempt to properly handle the local-dynamic and
global-dynamic TLS models.
In my original implementation, calls to __tls_get_addr were hidden
from view until the asm-printer phase, at which point the underlying
branch-and-link instruction was created with proper relocations. This
mostly worked well, but I used some repellent techniques to ensure
that the TLS_GET_ADDR nodes at the SD and MI levels correctly received
input from GPR3 and produced output into GPR3. This proved to work
badly in the presence of multiple TLS variable accesses, with the
copies to and from GPR3 being scheduled incorrectly and generally
creating havoc.
In r221703, I addressed that problem by representing the calls to
__tls_get_addr as true calls during instruction lowering. This had
the advantage of removing all of the bad hacks and relying on the
existing call machinery to properly glue the copies in place. It
looked like this was going to be the right way to go.
However, as a side effect of the recent discovery of problems with
linker optimizations for TLS, we discovered cases of suboptimal code
generation with this strategy. The problem comes when tls_get_addr is
called for the same address, and there is a resulting CSE
opportunity. It turns out that in such cases MachineCSE will common
the addis/addi instructions that set up the input value to
tls_get_addr, but will not common the calls themselves. MachineCSE
does not have any machinery to common idempotent calls. This is
perfectly sensible, since presumably this would be done at the IR
level, and introducing calls in the back end isn't commonplace. In
any case, we end up with two calls to __tls_get_addr when one would
suffice, and that isn't good.
I presumed that the original design would have allowed commoning of
the machine-specific nodes that hid the __tls_get_addr calls, so as
suggested by Ulrich Weigand, I went back to that design and cleaned it
up so that the copies were properly held together by glue
nodes. However, it turned out that this didn't work either...the
presence of copies to physical registers kept the machine-specific
nodes from being commoned also.
All of which leads to the design presented here. This is a return to
the original design, except that no attempt is made to introduce
copies to and from GPR3 during instruction lowering. Virtual registers
are used until prior to register allocation. At that point, a special
pass is run that identifies the machine-specific nodes that hide the
tls_get_addr calls and introduces the copies to and from GPR3 around
them. The register allocator then coalesces these copies away. With
this design, MachineCSE succeeds in commoning tls_get_addr calls where
possible, and we get nice optimal code generation (better than GCC at
the moment, which does not common these calls).
One additional problem must be dealt with: After introducing the
mentions of the physical register GPR3, the aggressive anti-dependence
breaker sees opportunities to improve scheduling by selecting a
different register instead. Flags must be used on the instruction
descriptions to tell the anti-dependence breaker to keep its hands in
its pockets.
One thing missing from the original design was recording a definition
of the link register on the GET_TLS_ADDR nodes. Doing this was found
to be insufficient to force a stack frame to be created, which led to
looping behavior because two different LR values were stored at the
same address. This appears to have been an oversight in
PPCFrameLowering::determineFrameLayout(), which is repaired here.
Because MustSaveLR() returns true for calls to builtin_return_address,
this changed the expected behavior of
test/CodeGen/PowerPC/retaddr2.ll, which now stacks a frame but
formerly did not. I've fixed the test case to reflect this.
There are existing TLS tests to catch regressions; the checks in
test/CodeGen/PowerPC/tls-store2.ll proved to be too restrictive in the
face of instruction scheduling with these changes, so I fixed that
up.
I've added a new test case based on the PrettyStackTrace module that
demonstrated the original problem. This checks that we get correct
code generation and that CSE of the calls to __get_tls_addr has taken
place.
llvm-svn: 227976
isel is actually a cracked instruction on the P7/P8, and must start a dispatch
group. The scheduling model should reflect this so that we don't bunch too many
of them together when possible.
Thanks to Bill Schmidt and Pat Haugen for helping to sort this out.
llvm-svn: 227758
Function pointers under PPC64 ELFv1 (which is used on PPC64/Linux on the
POWER7, A2 and earlier cores) are really pointers to a function descriptor, a
structure with three pointers: the actual pointer to the code to which to jump,
the pointer to the TOC needed by the callee, and an environment pointer. We
used to chain these loads, and make them opaque to the rest of the optimizer,
so that they'd always occur directly before the call. This is not necessary,
and in fact, highly suboptimal on embedded cores. Once the function pointer is
known, the loads can be performed ahead of time; in fact, they can be hoisted
out of loops.
Now these function descriptors are almost always generated by the linker, and
thus the contents of the descriptors are invariant. As a result, by default,
we'll mark the associated loads as invariant (allowing them to be hoisted out
of loops). I've added a target feature to turn this off, however, just in case
someone needs that option (constructing an on-stack descriptor, casting it to a
function pointer, and then calling it cannot be well-defined C/C++ code, but I
can imagine some JIT-compilation system doing so).
Consider this simple test:
$ cat call.c
typedef void (*fp)();
void bar(fp x) {
for (int i = 0; i < 1600000000; ++i)
x();
}
$ cat main.c
typedef void (*fp)();
void bar(fp x);
void foo() {}
int main() {
bar(foo);
}
On the PPC A2 (the BG/Q supercomputer), marking the function-descriptor loads
as invariant brings the execution time down to ~8 seconds from ~32 seconds with
the loads in the loop.
The difference on the POWER7 is smaller. Compiling with:
gcc -std=c99 -O3 -mcpu=native call.c main.c : ~6 seconds [this is 4.8.2]
clang -O3 -mcpu=native call.c main.c : ~5.3 seconds
clang -O3 -mcpu=native call.c main.c -mno-invariant-function-descriptors : ~4 seconds
(looks like we'd benefit from additional loop unrolling here, as a first
guess, because this is faster with the extra loads)
The -mno-invariant-function-descriptors will be added to Clang shortly.
llvm-svn: 226207
We really need a separate 64-bit version of this instruction so that it can be
marked as clobbering LR8 (instead of just LR). No change in functionality
(although the verifier might be slightly happier), however, it is required for
stackmap/patchpoint support. Thus, this will be covered by stackmap test cases
once those are added.
llvm-svn: 225804
The 64-bit semantics of cntlzw are not special, the 32-bit population count is
stored as a 64-bit value in the range [0,32]. As a result, it is always zero
extended, and it can be added to the PPCISelDAGToDAG peephole optimization as a
frontier instruction for the removal of unnecessary zero extensions.
llvm-svn: 225192
lhbrx and lwbrx not only load their data with byte swapping, but also clear the
upper 32 bits (at least). As a result, they can be added to the PPCISelDAGToDAG
peephole optimization as frontier instructions for the removal of unnecessary
zero extensions.
llvm-svn: 225189
Newer POWER cores, and the A2, support the cmpb instruction. This instruction
compares its operands, treating each of the 8 bytes in the GPRs separately,
returning a 'mask' result of 0 (for false) or -1 (for true) in each byte.
Code generation support is added, in the form of a PPCISelDAGToDAG
DAG-preprocessing routine, that recognizes patterns close to what the
instruction computes (either exactly, or related by a constant masking
operation), and generates the cmpb instruction (along with any necessary
constant masking operation). This can be expanded if use cases arise.
llvm-svn: 225106
This is the second installment of improvements to instruction selection for "bit
permutation" instruction sequences. r224318 added logic for instruction
selection for 32-bit bit permutation sequences, and this adds lowering for
64-bit sequences. The 64-bit sequences are more complicated than the 32-bit
ones because:
a) the 64-bit versions of the 32-bit rotate-and-mask instructions
work by replicating the lower 32-bits of the value-to-be-rotated into the
upper 32 bits -- and integrating this into the cost modeling for the various
bit group operations is non-trivial
b) unlike the 32-bit instructions in 32-bit mode, the rotate-and-mask instructions
cannot, in one instruction, specify the
mask starting index, the mask ending index, and the rotation factor. Also,
forming arbitrary 64-bit constants is more complicated than in 32-bit mode
because the number of instructions necessary is value dependent.
Plus, support for 'late masking' was added: it is sometimes more efficient to
treat the overall value as if it had no mandatory zero bits when planning the
bit-group insertions, and then mask them in at the very end. Unfortunately, as
the structure of the bit groups is different in the two cases, the more
feasible implementation technique was to generate both instruction sequences,
and then pick the shorter one.
And finally, we now generate reasonable code for i64 bswap:
rldicl 5, 3, 16, 0
rldicl 4, 3, 8, 0
rldicl 6, 3, 24, 0
rldimi 4, 5, 8, 48
rldicl 5, 3, 32, 0
rldimi 4, 6, 16, 40
rldicl 6, 3, 48, 0
rldimi 4, 5, 24, 32
rldicl 5, 3, 56, 0
rldimi 4, 6, 40, 16
rldimi 4, 5, 48, 8
rldimi 4, 3, 56, 0
vs. what we used to produce:
li 4, 255
rldicl 5, 3, 24, 40
rldicl 6, 3, 40, 24
rldicl 7, 3, 56, 8
sldi 8, 3, 8
sldi 10, 3, 24
sldi 12, 3, 40
rldicl 0, 3, 8, 56
sldi 9, 4, 32
sldi 11, 4, 40
sldi 4, 4, 48
andi. 5, 5, 65280
andis. 6, 6, 255
andis. 7, 7, 65280
sldi 3, 3, 56
and 8, 8, 9
and 4, 12, 4
and 9, 10, 11
or 6, 7, 6
or 5, 5, 0
or 3, 3, 4
or 7, 9, 8
or 4, 6, 5
or 3, 3, 7
or 3, 3, 4
which is 12 instructions, instead of 25, and seems optimal (at least in terms
of code size).
llvm-svn: 225056
On non-Darwin PPC64, the TOC reload needs to come directly after the bctrl
instruction (for indirect calls) because the 'bctrl/ld 2, 40(1)' instruction
sequence is interpreted by the unwinding code in libgcc. To make sure these
occur as a pair, as with other pairings interpreted by the linker, fuse the two
instructions into one instruction (for code generation only).
In the future, we might wish to do this by emitting CFI directives instead,
but this solution is simpler, and mirrors what GCC does. Additional discussion
on this point is contained in the PR.
Fixes PR22015.
llvm-svn: 224788
On PPC64, we end up with lots of i32 -> i64 zero extensions, not only from all
of the usual places, but also from the ABI, which specifies that values passed
are zero extended. Almost all 32-bit PPC instructions in PPC64 mode are defined
to do *something* to the higher-order bits, and for some instructions, that
action clears those bits (thus providing a zero-extended result). This is
especially common after rotate-and-mask instructions. Adding an additional
instruction to zero-extend the results of these instructions is unnecessary.
This PPCISelDAGToDAG peephole optimization examines these zero-extensions, and
looks back through their operands to see if all instructions will implicitly
zero extend their results. If so, we convert these instructions to their 64-bit
variants (which is an internal change only, the actual encoding of these
instructions is the same as the original 32-bit ones) and remove the
unnecessary zero-extension (changing where the INSERT_SUBREG instructions are
to make everything internally consistent).
llvm-svn: 224169
My original support for the general dynamic and local dynamic TLS
models contained some fairly obtuse hacks to generate calls to
__tls_get_addr when lowering a TargetGlobalAddress. Rather than
generating real calls, special GET_TLS_ADDR nodes were used to wrap
the calls and only reveal them at assembly time. I attempted to
provide correct parameter and return values by chaining CopyToReg and
CopyFromReg nodes onto the GET_TLS_ADDR nodes, but this was also not
fully correct. Problems were seen with two back-to-back stores to TLS
variables, where the call sequences ended up overlapping with unhappy
results. Additionally, since these weren't real calls, the proper
register side effects of a call were not recorded, so clobbered values
were kept live across the calls.
The proper thing to do is to lower these into calls in the first
place. This is relatively straightforward; see the changes to
PPCTargetLowering::LowerGlobalTLSAddress() in PPCISelLowering.cpp.
The changes here are standard call lowering, except that we need to
track the fact that these calls will require a relocation. This is
done by adding a machine operand flag of MO_TLSLD or MO_TLSGD to the
TargetGlobalAddress operand that appears earlier in the sequence.
The calls to LowerCallTo() eventually find their way to
LowerCall_64SVR4() or LowerCall_32SVR4(), which call FinishCall(),
which calls PrepareCall(). In PrepareCall(), we detect the calls to
__tls_get_addr and immediately snag the TargetGlobalTLSAddress with
the annotated relocation information. This becomes an extra operand
on the call following the callee, which is expected for nodes of type
tlscall. We change the call opcode to CALL_TLS for this case. Back
in FinishCall(), we change it again to CALL_NOP_TLS for 64-bit only,
since we require a TOC-restore nop following the call for the 64-bit
ABIs.
During selection, patterns in PPCInstrInfo.td and PPCInstr64Bit.td
convert the CALL_TLS nodes into BL_TLS nodes, and convert the
CALL_NOP_TLS nodes into BL8_NOP_TLS nodes. This replaces the code
removed from PPCAsmPrinter.cpp, as the BL_TLS or BL8_NOP_TLS
nodes can now be emitted normally using their patterns and the
associated printTLSCall print method.
Finally, as a result of these changes, all references to get-tls-addr
in its various guises are no longer used, so they have been removed.
There are existing TLS tests to verify the changes haven't messed
anything up). I've added one new test that verifies that the problem
with the original code has been fixed.
llvm-svn: 221703
Since block address values can be larger than 2GB in 64-bit code, they
cannot be loaded simply using an @l / @ha pair, but instead must be
loaded from the TOC, just like GlobalAddress, ConstantPool, and
JumpTable values are.
The commit also fixes a bug in PPCLinuxAsmPrinter::doFinalization where
temporary labels could not be used as TOC values, since code would
attempt (and fail) to use GetOrCreateSymbol to create a symbol of the
same name as the temporary label.
llvm-svn: 220959