The spec allows zero-dimensional memrefs to exist and treats them essentially
as single-element buffers. Unlike single-dimensional memrefs of static shape
<1xTy>, zero-dimensional memrefs do not require indices to access the only
element they store. Add support of zero-dimensional memrefs to the LLVM IR
conversion. In particular, such memrefs are converted into bare pointers, and
accesses to them are converted to bare loads and stores, without the overhead
of `getelementptr %buffer, 0`.
PiperOrigin-RevId: 240579456
When converting to the LLVM IR Dialect, it is possible for the input IR to
contain LLVM IR Dialect operation and/or types, for example, some functions may
have been coverted to the LLVM IR Dialect already, or may have been created
using this dialect directly. Make sure that type conversion keeps LLVM IR
Dialect types unmodified and does not error out. Operations are already kept
as is.
PiperOrigin-RevId: 240574972
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators. This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.
Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation. For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format. The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.
Update transformations to account for the presence of terminator. In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.
PiperOrigin-RevId: 240536998
Before this CL, the result type of the pattern match results need to be as same
as the first operand type, operand broadcast type or a generic tensor type.
This CL adds a new trait to set the result type by attribute. For example, the
TFL_ConstOp can use this to set the output type to its value attribute.
PiperOrigin-RevId: 240441249
Currently, regions can only be constructed by passing in a `Function` or an
`Instruction` pointer referencing the parent object, unlike `Function`s or
`Instruction`s themselves that can be created without a parent. It leads to a
rather complex flow in operation construction where one has to create the
operation first before being able to work with its regions. It may be
necessary to work with the regions before the operation is created. In
particular, in `build` and `parse` functions that are executed _before_ the
operation is created in cases where boilerplate region manipulation is required
(for example, inserting the hypothetical default terminator in affine regions).
Allow creating standalone regions. Such regions are meant to own a list of
blocks and transfer them to other regions on demand.
Each instruction stores a fixed number of regions as trailing objects and has
ownership of them. This decreases the size of the Instruction object for the
common case of instructions without regions. Keep this behavior intact. To
allow some flexibility in construction, make OperationState store an owning
vector of regions. When the Builder creates an Instruction from
OperationState, the bodies of the regions are transferred into the
instruction-owned regions to minimize copying. Thus, it becomes possible to
fill standalone regions with blocks and move them to an operation when it is
constructed, or move blocks from a region to an operation region, e.g., for
inlining.
PiperOrigin-RevId: 240368183
a pointer. This makes it consistent with all the other methods in
FunctionPass, as well as with ModulePass::getModule(). NFC.
PiperOrigin-RevId: 240257910
This combined match/rewrite functionality allows simplifying the majority of existing RewritePatterns, as they do not benefit from separate match and rewrite functions.
Some of the existing canonicalization patterns in StandardOps have been modified to take advantage of this functionality.
PiperOrigin-RevId: 240187856
Previously we have multiple mechanisms to specify op definition and match constraints:
TypeConstraint, AttributeConstraint, Type, Attr, mAttr, mAttrAnyOf, mPat. These variants
are not added because there are so many distinct cases we need to model; essentially,
they are all carrying a predicate. It's just an artifact of implementation.
It's quite confusing for users to grasp these variants and choose among them. Instead,
as the OpBase TableGen file, we need to strike to provide an unified mechanism. Each
dialect has the flexibility to define its own aliases if wanted.
This CL removes mAttr, mAttrAnyOf, mPat. A new base class, Constraint, is added. Now
TypeConstraint and AttrConstraint derive from Constraint. Type and Attr further derive
from TypeConstraint and AttrConstraint, respectively.
Comments are revised and examples are added to make it clear how to use constraints.
PiperOrigin-RevId: 240125076
Dialect implementer are expected to inherit from this class when implementing their types. It does not seems right when using MLIR "from the outside" to use directly something from `mlir::detail::`.
PiperOrigin-RevId: 240075769
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
We just need a way to unpack ArrayRef<ValueHandle> to ArrayRef<Value*>.
No need to expose this to the user.
This reduces the cognitive overhead for the tutorial.
PiperOrigin-RevId: 240037425
tblgen be non-const. This requires introducing some const_cast's at the
moment, but those (and lots more stuff) will disappear in subsequent patches.
This significantly simplifies those patches because the various tblgen op emitters
get adjusted.
PiperOrigin-RevId: 239954566
This CL revisits the composition of AffineApplyOp for the special case where a symbol
itself comes from an AffineApplyOp.
This is achieved by rewriting such symbols into dims to allow composition to occur mathematically.
The implementation is also refactored to improve readability.
Rationale for locally rewriting symbols as dims:
================================================
The mathematical composition of AffineMap must always concatenate symbols
because it does not have enough information to do otherwise. For example,
composing `(d0)[s0] -> (d0 + s0)` with itself must produce
`(d0)[s0, s1] -> (d0 + s0 + s1)`.
The result is only equivalent to `(d0)[s0] -> (d0 + 2 * s0)` when
applied to the same mlir::Value* for both s0 and s1.
As a consequence mathematical composition of AffineMap always concatenates
symbols.
When AffineMaps are used in AffineApplyOp however, they may specify
composition via symbols, which is ambiguous mathematically. This corner case
is handled by locally rewriting such symbols that come from AffineApplyOp
into dims and composing through dims.
PiperOrigin-RevId: 239791597
This also eliminates some incorrect reinterpret_cast logic working around it, and numerous const-incorrect issues (like block argument iteration).
PiperOrigin-RevId: 239712029
This allows the indexing sugar to just work naturally with other type of load and store ops than the affine ones we currently have.
This is needed for the EuroLLVM tutorial.
PiperOrigin-RevId: 239602257
This eliminate ConstOpPointer (but keeps OpPointer for now) by making OpPointer
implicitly launder const in a const incorrect way. It will eventually go away
entirely, this is a progressive step towards the new const model.
PiperOrigin-RevId: 239512640
Previously we emit both op declaration and definition into one file and include it
in *Ops.h. That pulls in lots of implementation details in the header file and we
cannot hide symbols local to implementation. This CL splits them to provide a cleaner
interface.
The way how we define custom builders in TableGen is changed accordingly because now
we need to distinguish signatures and implementation logic. Some custom builders with
complicated logic now can be moved to be implemented in .cpp entirely.
PiperOrigin-RevId: 239509594
This CL fixes an issue where cloned loop induction variables were not properly
propagated and beefs up the corresponding test.
PiperOrigin-RevId: 239422961