Summary:
Normally, on linux we retrieve the process ID from the LinuxProcStatus
stream (which is just the contents of /proc/%d/status pseudo-file).
However, this stream is not strictly required (it's a breakpad
extension), and we are encountering a fair amount of minidumps which do
not have it present. It's not clear whether this is the case with all
these minidumps, but the two known situations where this stream can be
missing are:
- /proc filesystem not mounted (or something to that effect)
- process crashing after exhausting (almost) all file descriptors (so
the minidump writer may not be able to open the /proc file)
Since this is a corner case which will become less and less relevant
(crashpad-generated minidumps should not suffer from this problem), I
work around this problem by hardcoding the PID to 1 in these cases.
The same thing is done by the gdb plugin when talking to a stub which
does not report a process id (e.g. a hardware probe).
Reviewers: jingham, clayborg
Subscribers: markmentovai, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70238
Summary:
This code is handling debug info paths starting with /proc/self/cwd,
which is one of the mechanisms people use to obtain "relocatable" debug
info (the idea being that one starts the debugger with an appropriate
cwd and things "just work").
Instead of resolving the symlinks inside DWARFUnit, we can do the same
thing more elegantly by hooking into the existing Module path remapping
code. Since llvm::DWARFUnit does not support any similar functionality,
doing things this way is also a step towards unifying llvm and lldb
dwarf parsers.
Reviewers: JDevlieghere, aprantl, clayborg, jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71770
Summary:
Motivation: When setting breakpoints in certain projects line sequences are frequently being inserted out of order.
Rather than inserting sequences one at a time into a sorted line table, store all the line sequences as we're building them up and sort and flatten afterwards.
Reviewers: jdoerfert, labath
Reviewed By: labath
Subscribers: teemperor, labath, mgrang, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72909
Summary:
This method was doing a lot more than it's only caller needed
(DWARFDIE::LookupDeepestBlock) needed, so I inline it into the caller,
and remove any code which is not actually used. This includes code for
searching for the deepest function, and the code for working around
incomplete DW_AT_low_pc/high_pc attributes on a compile unit DIE (modern
compiler get this right, and this method is called on function DIEs
anyway).
This also improves our llvm consistency, as llvm::DWARFDebugInfoEntry is
just a very simple struct with no nontrivial logic.
Reviewers: JDevlieghere, aprantl
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72920
Summary:
The goal of this patch is two-fold. First, it fixes a use-after-free in
the construction of the llvm DWARFContext. This happened because the
construction code was throwing away the lldb DataExtractors it got while
reading the sections (unlike their llvm counterparts, these are also
responsible for memory ownership). In most cases this did not matter,
because the sections are just slices of the mmapped file data. But this
isn't the case for compressed elf sections, in which case the section is
decompressed into a heap buffer. A similar thing also happen with object
files which are loaded from process memory.
The second goal is to make it explicit which sections go into the llvm
DWARFContext -- any access to the sections through both DWARF parsers
carries a risk of parsing things twice, so it's better if this is a
conscious decision. Also, this avoids loading completely irrelevant
sections (e.g. .text). At present, the only section that needs to be
present in the llvm DWARFContext is the debug_line_str. Using it through
both APIs is not a problem, as there is no parsing involved.
The first goal is achieved by loading the sections through the existing
lldb DWARFContext APIs, which already do the caching. The second by
explicitly enumerating the sections we wish to load.
Reviewers: JDevlieghere, aprantl
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72917
[this re-applies c0176916a4
with the correct commit message and phabricator link]
This addresses point 1 of PR44213.
https://bugs.llvm.org/show_bug.cgi?id=44213
The DW_AT_LLVM_sysroot attribute is used for Clang module debug info,
to allow LLDB to import a Clang module from source. Currently it is
part of each DW_TAG_module, however, it is the same for all modules in
a compile unit. It is more efficient and less ambiguous to store it
once in the DW_TAG_compile_unit.
This should have no effect on DWARF consumers other than LLDB.
Differential Revision: https://reviews.llvm.org/D71732
This is a purely cosmetic change that is NFC in terms of the binary
output. I bugs me that I called the attribute DW_AT_LLVM_isysroot
since the "i" is an artifact of GCC command line option syntax
(-isysroot is in the category of -i options) and doesn't carry any
useful information otherwise.
This attribute only appears in Clang module debug info.
Differential Revision: https://reviews.llvm.org/D71722
size_t and uint64_t are spelled slightly differently on macOS, which was
causing the compiler to error out calling std::min - since the two types have
to be the same.
I fixed this by casting the uint64_t computation to a size_t. That's probably
not the cleanest solution, but it gets us back to building.
Summary:
This is the first in a series of patches to enable LLDB debugging of
WebAssembly targets.
Current versions of Clang emit (partial) DWARF debug information in WebAssembly
modules and we can leverage this debug information to give LLDB the ability to
do source-level debugging of Wasm code that runs in a WebAssembly engine.
A way to do this could be to use the remote debugging functionalities provided
by LLDB via the GDB-remote protocol. Remote debugging can indeed be useful not
only to connect a debugger to a process running on a remote machine, but also to
connect the debugger to a managed VM or script engine that runs locally,
provided that the engine implements a GDB-remote stub that offers the ability to
access the engine runtime internal state.
To make this work, the GDB-remote protocol would need to be extended with a few
Wasm-specific custom query commands, used to access aspects of the Wasm engine
state (like the Wasm memory, Wasm local and global variables, and so on).
Furthermore, the DWARF format would need to be enriched with a few Wasm-specific
extensions, here detailed: https://yurydelendik.github.io/webassembly-dwarf.
This CL introduce classes **ObjectFileWasm**, a file plugin to represent a Wasm
module loaded in a debuggee process. It knows how to parse Wasm modules and
store the Code section and the DWARF-specific sections.
Reviewers: jasonmolenda, clayborg, labath
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71575
This reverts D53469, which changed llvm's DWARF emission to emit
DW_AT_call_return_pc as a function-local offset. Such an encoding is not
compatible with post-link block re-ordering tools and isn't standards-
compliant.
In addition to reverting back to the original DW_AT_call_return_pc
encoding, teach lldb how to fix up DW_AT_call_return_pc when the address
comes from an object file pointed-to by a debug map. While doing this I
noticed that lldb's support for tail calls that cross a DSO/object file
boundary wasn't covered, so I added tests for that. This latter case
exercises the newly added return PC fixup.
The dsymutil changes in this patch were originally included in D49887:
the associated test should be sufficient to test DW_AT_call_return_pc
encoding purely on the llvm side.
Differential Revision: https://reviews.llvm.org/D72489
The 'asynchronously' argument to both GetLLDBCommandsFromIOHandler and
GetPythonCommandsFromIOHandler is true for all call sites. This commit
simplifies the API by dropping it and giving the baton a default
argument.
These are the last sections not managed by the DWARFContext object. I
also introduce separate SectionType enums for dwo section variants, as
this is necessary for proper handling of single-file split dwarf.
Summary:
This change is connected with
https://reviews.llvm.org/D69843
In large codebases, we sometimes see Module::FindFunctions (when called from
ClangExpressionDeclMap::FindExternalVisibleDecls) returning huge amounts of
functions.
In current fix I trying to return only function_fullnames from ManualDWARFIndex::GetFunctions when eFunctionNameTypeFull is passed as argument.
Reviewers: labath, jarin, aprantl
Reviewed By: labath
Subscribers: shafik, clayborg, teemperor, arphaman, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70846
When trying to interpret an expression with a function call, if the
process hasn't been launched, the expression fails to be interpreted
and the user gets the following error message:
```error: Can't run the expression locally```
This message doesn't explain why the expression failed to be
interpreted, that's why this patch improves the error message that is
displayed when trying to run an expression while no process is running.
rdar://11991708
Differential Revision: https://reviews.llvm.org/D72510
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This fixes a failing testcase on Fedora 30 x86_64 (regression Fedora 29->30):
PASS:
./bin/lldb ./lldb-test-build.noindex/functionalities/unwind/noreturn/TestNoreturnUnwind.test_dwarf/a.out -o 'settings set symbols.enable-external-lookup false' -o r -o bt -o quit
* frame #0: 0x00007ffff7aa6e75 libc.so.6`__GI_raise + 325
frame #1: 0x00007ffff7a91895 libc.so.6`__GI_abort + 295
frame #2: 0x0000000000401140 a.out`func_c at main.c:12:2
frame #3: 0x000000000040113a a.out`func_b at main.c:18:2
frame #4: 0x0000000000401134 a.out`func_a at main.c:26:2
frame #5: 0x000000000040112e a.out`main(argc=<unavailable>, argv=<unavailable>) at main.c:32:2
frame #6: 0x00007ffff7a92f33 libc.so.6`__libc_start_main + 243
frame #7: 0x000000000040106e a.out`_start + 46
vs.
FAIL - unrecognized abort() function:
./bin/lldb ./lldb-test-build.noindex/functionalities/unwind/noreturn/TestNoreturnUnwind.test_dwarf/a.out -o 'settings set symbols.enable-external-lookup false' -o r -o bt -o quit
* frame #0: 0x00007ffff7aa6e75 libc.so.6`.annobin_raise.c + 325
frame #1: 0x00007ffff7a91895 libc.so.6`.annobin_loadmsgcat.c_end.unlikely + 295
frame #2: 0x0000000000401140 a.out`func_c at main.c:12:2
frame #3: 0x000000000040113a a.out`func_b at main.c:18:2
frame #4: 0x0000000000401134 a.out`func_a at main.c:26:2
frame #5: 0x000000000040112e a.out`main(argc=<unavailable>, argv=<unavailable>) at main.c:32:2
frame #6: 0x00007ffff7a92f33 libc.so.6`.annobin_libc_start.c + 243
frame #7: 0x000000000040106e a.out`.annobin_init.c.hot + 46
The extra ELF symbols are there due to Annobin (I did not investigate why this
problem happened specifically since F-30 and not since F-28).
It is due to:
Symbol table '.dynsym' contains 2361 entries:
Valu e Size Type Bind Vis Name
0000000000022769 5 FUNC LOCAL DEFAULT _nl_load_domain.cold
000000000002276e 0 NOTYPE LOCAL HIDDEN .annobin_abort.c.unlikely
...
000000000002276e 0 NOTYPE LOCAL HIDDEN .annobin_loadmsgcat.c_end.unlikely
...
000000000002276e 0 NOTYPE LOCAL HIDDEN .annobin_textdomain.c_end.unlikely
000000000002276e 548 FUNC GLOBAL DEFAULT abort
000000000002276e 548 FUNC GLOBAL DEFAULT abort@@GLIBC_2.2.5
000000000002276e 548 FUNC LOCAL DEFAULT __GI_abort
0000000000022992 0 NOTYPE LOCAL HIDDEN .annobin_abort.c_end.unlikely
GDB has some more complicated preferences between overlapping and/or sharing
address symbols, I have made here so far the most simple fix for this case.
Differential revision: https://reviews.llvm.org/D63540
The argument is llvm::null() everywhere except llvm::errs() in
llvm-objdump in -DLLVM_ENABLE_ASSERTIONS=On builds. It is used by no
target but X86 in -DLLVM_ENABLE_ASSERTIONS=On builds.
If we ever have the needs to add verbose log to disassemblers, we can
record log with a member function, instead of passing it around as an
argument.
Summary:
This is a port of D67803 that was about preventing indirect importing to our scratch context when evaluating expressions.
D67803 already has a pretty long explanation of how this works, but the idea is that instead
of importing declarations indirectly over the expression AST (i.e., Debug info AST -> Expression AST -> scratch AST)
we instead directly import the declaration from the debug info AST to the scratch AST.
The difference from D67803 is that here we have to do this in the ASTImporterDelegate (which is our ASTImporter
subclass we use in LLDB). It has the same information as the ExternalASTMerger in D67803 as it can access the
ClangASTImporter (which also keeps track of where Decls originally came from).
With this patch we can also delete the FieldDecl stealing hack in the ClangASTSource (this was only necessary as the
indirect imports caused the creation of duplicate Record declarations but we needed the fields in the Record decl
we originally found in the scratch ASTContext).
This also fixes the current gmodules failures where we fail to find std::vector fields after an indirect import
over the expression AST (where it seems even our FieldDecl stealing hack can't save us from).
Reviewers: shafik, aprantl
Reviewed By: shafik
Subscribers: JDevlieghere, lldb-commits, mib, labath, friss
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72507
GetPersistentExpressionStateForLanguage() can return a nullptr if it
cannot construct a typesystem. This patch adds missing nullptr checks
at all uses.
Inspired by rdar://problem/58317195
Differential Revision: https://reviews.llvm.org/D72413
This patch removes the code (deep inside DWARFDebugInfoEntry) which
automagically returned the attributes of the dwo unit DIE when asking
for the attributes of the skeleton unit. This is fairly hacky, and not
consistent with how llvm DWARF parser operates.
Instead, I change the code the explicitly request (via
GetNonSkeletonUnit) the right unit to search (there were just two places
that needed this). If it turns out we need this more often, we can
create a utility function (external to DWARFUnit) for doing this.
qemu has a very small maximum packet size (4096) and it actually
only uses half of that buffer for some implementation reason,
so when lldb asks for the register target definitions, the x86_64
definition is larger than 4096/2 and we need to fetch it in two parts.
This patch and test is fixing a bug in
GDBRemoteCommunicationClient::ReadExtFeature when reading a target
file in multiple parts. lldb was assuming that it would always
get back the maximum packet size response (4096) instead of
using the actual size received and asking for the next group of
bytes.
We now have two tests in gdb_remote_client for unique features
of qemu - TestNestedRegDefinitions.py would test the ability
of lldb to follow multiple levels of xml includes; I opted to
create a separate TestRegDefinitionInParts.py test to test this
wrinkle in qemu's gdb remote serial protocol stub implementation.
Instead of combining both tests into a single test file.
<rdar://problem/49537922>
The Python script interpreter makes the current debugger, target,
process, thread and frame available to interactive scripting sessions
through convenience variables. This patch does the same for Lua.
Differential revision: https://reviews.llvm.org/D71801
Summary:
Our code was expecting that a single (symbol) file contains only one
kind of location lists. This is not correct (on non-apple platforms, at
least) as a file can compile units with different dwarf versions.
This patch moves the deteremination of location list flavour down to the
compile unit level, fixing this problem. I have also tried to rougly
align the code with the llvm DWARFUnit. Fully matching the API is not
possible because of how lldb's DWARFExpression lives separately from the
rest of the DWARF code, but this is at least a step in the right
direction.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71751
Summary:
A skeleton unit can easily be detected by checking the m_dwo_symbol_file
member, but we cannot tell a split unit from a normal unit from the
"inside", which is sometimes useful.
This patch adds a m_is_dwo member to enable this, and align the code
with llvm::DWARFUnit. Right now it's only used to avoid creating a split
unit inside another split unit (which removes one override from
SymbolFileDWARFDwo and brings us a step closer to deleting it), but my
main motivation is fixing the handling of location lists in mixed v4&v5
files. This comes in a separate patch.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71750
Summary: There are a few places in LLDB where we do a `reinterpret_cast` for conversions that we could also do with `static_cast`. This patch moves all this code to `static_cast`.
Reviewers: shafik, JDevlieghere, labath
Reviewed By: labath
Subscribers: arphaman, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72161
This constructor is supposed to take a string representing an llvm::Triple.
We might as well take a llvm::Triple here which saves us all the string
conversions in the call sites and we make this more type safe.
orig_*ax logic is Linux-specific, and was never used on NetBSD.
In fact, its support seems to be a dead code entirely.
Differential Revision: https://reviews.llvm.org/D72195
There is no clang::Action anymore so our forward decl for it and the obsolete pointer in the
ASTStructExtractor can both go (that code anyway didn't do anything).
The current FOUND_VAR for FindLibEdit is libedit_FOUND but wasn't set by
find_package_handle_standard_args. However this isn't valid for the
package name.
The argument for FOUND_VAR is "libedit_FOUND", but only "LibEdit_FOUND" and
"LIBEDIT_FOUND" are valid names.
This fixes all the variables set by FindLibEdit to match the desired
naming scheme.
PYTHON_LIBRARIES is the canonical variable set by FindPythonLibs while
PYTHON_LIBRARY is an implementation detail. This replaces the uses of
the latter with the former.
Rather than handling zlib handling manually, use `find_package` from CMake
to find zlib properly. Use this to normalize the `LLVM_ENABLE_ZLIB`,
`HAVE_ZLIB`, `HAVE_ZLIB_H`. Furthermore, require zlib if `LLVM_ENABLE_ZLIB` is
set to `YES`, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This restores 68a235d07f,
e6c7ed6d21. The problem with the windows
bot is a need for clearing the cache.
This reverts commit 68a235d07f.
This commit broke the clang-x64-windows-msvc build bot and a follow-up
commit did not fix it. Reverting to fix the bot.
LLDB frequently converts QualType to CompilerType. This is currently done like this:
result = CompilerType(this, qual_type_var.getAsOpaquePtr())
There are a few shortcomings in this current approach:
1. CompilerType's constructor takes a void* pointer so it isn't type safe.
2. We can't add any sanity checks to the CompilerType constructor (e.g. that the type
actually belongs to the passed ClangASTContext) without expanding the TypeSystem API.
3. The logic for converting QualType->CompilerType is spread out over all of LLDB so
changing it is difficult (e.g., what if we want to just pass the type ptr and not the
1type_ptr | qual_flags1 to CompilerType).
This patch adds a `ClangASTContext::GetType` function similar to the other GetTypeForDecl
functions that does this conversion in a type safe way.
It also adds a sanity check for Tag-based types that the type actually belongs to the
current ClangASTContext (Types don't seem to know their ASTContext, so we have to
workaround by looking at the decl for the underlying TagDecl. This doesn't cover all types
we construct but it's better than no sanity check).
Rather than handling zlib handling manually, use `find_package` from CMake
to find zlib properly. Use this to normalize the `LLVM_ENABLE_ZLIB`,
`HAVE_ZLIB`, `HAVE_ZLIB_H`. Furthermore, require zlib if `LLVM_ENABLE_ZLIB` is
set to `YES`, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
CompilerType has no virtual functions and no statements in its constructors,
so we can simplify this code. This also allows Clang to emit unused variable warnings
for CompilerType, so I also removed one unused variable that otherwise causes -Werror
builds to fail.
We try to build a CompilerType from the persistent decls so we need
a ClangASTContext. With this patch the ClangPersistentVariables store
the associated ClangASTContext of the persistent decls (which is
always the scratch ClangASTContext) and no longer call GetASTContext
to map back from clang::ASTContext to ClangASTContext.
Instead of returning NamedDecls and then calling GetASTContext
to find back the ClangASTContext we used can just implement the
FindDecl variant that returns CompilerDecls (and implement the
other function by throwing away the ClangASTContext part of the
compiler decl).
This code actually needs a ClangASTContext but instead takes a
clang::ASTContext and then retrieves the original ClangASTContext
via the global map of ClangASTContexts. Let's change it so
that it takes a ClangASTContext which is simpler and faster.
GetASTContext is really expensive to call as it makes use of the global
mapping from ASTContext to ClangASTContext. This replaces all calls where
we already have the ClangASTContext around and don't need to call
GetASTContext again.
ClangExternalASTSourceCommon's purpose is to store a map from
Decl*/Type* to ClangASTMetadata. Usually this data is accessed
via the ClangASTContext interface which then grabs the
current ExternalASTSource of its ASTContext, tries to cast it
to ClangExternalASTSourceCommon and then accesses the metadata
map. If the casting fails the setter does nothing and the getter
returns a nullptr as if there was no known metadata for a type/decl.
This system breaks as soon as any non-LLDB ExternalASTSource is added via
a multiplexer to our existing ExternalASTSource (in which case we suddenly
loose all out metadata as the casting always fails with an ExternalASTSource
that is not inheriting from ClangExternalASTSourceCommon).
This patch moves the metadata map to the ClangASTContext. This gets
rid of all the fragile casting, the requirement that every ExternalASTSource in
LLDB has to inherit from ClangExternalASTSourceCommon and simplifies
the metadata implementation to a simple map lookup. As ClangExternalASTSourceCommon
had no other purpose than storing metadata, this patch deletes this class
and replaces all uses with clang::ExternalASTSource.
No other code changes in this commit beside the AppleObjCDeclVendor which
was the only code that did not use the ClangASTContext interface but directly
accessed the ClangExternalASTSourceCommon.
This function is not very useful, as it's forcing a materialization of
the returned DIEs, and calling it is not substantially simpler than just
iterating over the DIEs manually. Delete it, and rewrite the single
caller.
This bit of code is trying to strip everything up to the first colon
from all debug info paths, as dwarf2 recommends this syntax for storing
the compilation host name. However, this code was too eager, and it
ended up stripping the entire compilation directory, if it did not
contain a forward slash (or a "x:\").
Normally this does not matter, as all absolute paths will contain one of
these patterns, but this does not have to be the case in case the debug
info is produced by "clang -fdebug-compilation-dir", which can end up
producing a relative compilation directory with no slashes (this is one
of the techniques for producing "relocatable" debug info).
This adds a check that the ClangASTContext actually fits to the
DeclContext that we want to create a CompilerDeclContext for. If
the ClangASTContext (and its associated ASTContext) does not fit
to the DeclContext (that is, the DeclContext wasn't created by the
ASTContext), all computations using this malformed CompilerDeclContext
will yield unpredictable results.
Also fixes the only place that actually hits this assert which is the
construction of a CompilerDeclContext in ClangExpressionDeclMap
where we pass an unrelated ASTContext instead of the ASTContext
of the current expression.
I had to revert my previous change to DWARFASTParserClangTests.cpp
back to using the unsafe direct construction of CompilerDeclContext
as this assert won't work if the DeclContext we pass isn't a valid
DeclContext in the first place.
Summary:
This code is handling debug info paths starting with /proc/self/cwd,
which is one of the mechanisms people use to obtain "relocatable" debug
info (the idea being that one starts the debugger with an appropriate
cwd and things "just work").
Instead of resolving the symlinks inside DWARFUnit, we can do the same
thing more elegantly by hooking into the existing Module path remapping
code. Since llvm::DWARFUnit does not support any similar functionality,
doing things this way is also a step towards unifying llvm and lldb
dwarf parsers.
Reviewers: JDevlieghere, aprantl, clayborg, jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71770
The CompilerDeclContext constructor takes a void* pointer which
means that all callers of this constructor need to first explicitly
convert all pointers to clang::DeclContext*. This causes that we
for example can't just pass a TranslationUnitDecl* to the constructor without
first casting it to its parent class (as it inherits from both
Decl and DeclContext so the void* pointer is actually a Decl*).
This patch introduces a utility function in the ClangASTContext
which gets rid of the requirement to cast all pointers to
clang::DeclContext. Also moves all constructor calls to use this
function instead which is NFC (beside the change in
DWARFASTParserClangTests.cpp).
The `-r` option for `command script import` is there for legacy
compatibility, however the can_reload flag is always set to true. This
patch removes the flag and any code that relies on it being false.
Don't create a new lua state on every operation. Share a single state
across the lifetime of the script interpreter. Add simple locking to
prevent two threads from modifying the state concurrently.
ClangASTContext::getASTContext() currently returns a ptr but we have an assert there since a
while that the ASTContext is not a nullptr. This causes that we still have a lot of code
that is doing nullptr checks on the result of getASTContext() which is all unreachable code.
This patch changes the return value to a reference to make it clear this can't be a nullptr
and deletes all the nullptr checks.
Their naming is misleading as they only return the
ClangASTContext-owned variables. For ClangASTContext instances constructed
for a given clang::ASTContext they silently generated duplicated instances
(e.g., a second IdentifierTable) that were essentially unusable.
This removes all these getters as they are anyway not very useful in comparison
to just calling the clang::ASTContext getters. The initialization
code has been moved to the CreateASTContext initialization method so that all
code for making our own clang::ASTContext is in one place.
echo -e '#include <unistd.h>\nint main(void){\nsync();return 0;}'|./bin/clang -g -x c -;./bin/lldb -o 'file ./a.out' -o 'b main' -o r -o 'p (void)sync()'
Actual:
error: Expression can't be run, because there is no JIT compiled function
Expected:
<nothing, sync() has been executed>
This patch has been checked by:
D71707: clang-tidy: new bugprone-pointer-cast-widening
https://reviews.llvm.org/D71707
Casting from 32-bit `void *` to `uint64_t` requires an intermediate `uintptr_t` cast otherwise the pointer gets sign-extended:
echo -e '#include <stdio.h>\n#include <stdint.h>\nint main(void){void *p=(void *)0x80000000;unsigned long long ull=(unsigned long long)p;unsigned long long ull2=(unsigned long
long)(uintptr_t)p;printf("p=%p ull=0x%llx ull2=0x%llx\\n",p,ull,ull2);return 0;}'|gcc -Wall -m32 -x c -;./a.out
<stdin>: In function ‘main’:
<stdin>:3:66: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
p=0x80000000 ull=0xffffffff80000000 ull2=0x80000000
With debug output:
Actual:
IRMemoryMap::WriteMemory (0xb6ff8640, 0xffffffffb6f82158, 0x112) went to [0xb6ff8640..0xb6ff86b3)
Code can be run in the target.
Found function, has local address 0xffffffffb6f84000 and remote address 0xffffffffffffffff
Couldn't disassemble function : Couldn't find code range for function _Z12$__lldb_exprPv
Sections:
[0xb6f84000+0x3c]->0xb6ff9020 (alignment 4, section ID 0, name .text)
...
HandleCommand, command did not succeed
error: Expression can't be run, because there is no JIT compiled function
Expected:
IRMemoryMap::WriteMemory (0xb6ff8640, 0xb6faa15c, 0x128) went to [0xb6ff8640..0xb6ff86c3)
IRExecutionUnit::GetRemoteAddressForLocal() found 0xb6fac000 in [0xb6fac000..0xb6fac040], and returned 0xb6ff9020 from [0xb6ff9020..0xb6ff9060].
Code can be run in the target.
Found function, has local address 0xb6fac000 and remote address 0xb6ff9020
Function's code range is [0xb6ff9020+0x40]
...
Function data has contents:
0xb6ff9020: 10 4c 2d e9 08 b0 8d e2 08 d0 4d e2 00 40 a0 e1
...
Function disassembly:
0xb6ff9020: 0xe92d4c10 push {r4, r10, r11, lr}
Differential revision: https://reviews.llvm.org/D71498
This is a purely cosmetic change that is NFC in terms of the binary
output. I bugs me that I called the attribute DW_AT_LLVM_isysroot
since the "i" is an artifact of GCC command line option syntax
(-isysroot is in the category of -i options) and doesn't carry any
useful information otherwise.
This attribute only appears in Clang module debug info.
Differential Revision: https://reviews.llvm.org/D71722
This implements a very elementary Lua script interpreter. It supports
running a single command as well as running interactively. It uses
editline if available. It's still missing a bunch of stuff though. Some
things that I intentionally ingored for now are that I/O isn't properly
hooked up (so every print goes to stdout) and the non-editline support
which is not handling a bunch of corner cases. The latter is a matter of
reusing existing code in the Python interpreter.
Discussion on the mailing list:
http://lists.llvm.org/pipermail/lldb-dev/2019-December/015812.html
Differential revision: https://reviews.llvm.org/D71234
We already pass a Decl here and the additional ASTContext needs to
match the Decl. We might as well just pass the Decl and then extract
the ASTContext from that.
Summary:
Fixes PR41237 - SIGSEGV on call expression evaluation when debugging clang
When linking multiple compilation units that define the same functions,
the functions is merged but their debug info is not. This ignores debug
info entries for functions in a non-executable sections; those are
functions that were definitely dropped by the linker.
Reviewers: spyffe, clayborg, jasonmolenda
Reviewed By: clayborg
Subscribers: labath, aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71487
This error message didn't specify which file was malformed, so
there's some hunting-around required if it comes up. We have the
filename; include it in the error message.
Remove the hack that populates the cpsr register in the gpr struct by
writing past the end of the array. This was tripping up ASan.
Patch by: Reva Cuthbertson
This adds a unit test for looking up persistent declarations in the scratch AST
context. Also adds the `GetPersistentDecl` hook to the ClangExpressionDeclMap
that this unit test can emulate looking up persistent variables without having
a lldb_private::Target.
The ClangExpressionDeclMap should be testable from a unit test. This is currently
impossible as they have both dependencies on Target/ExecutionContext from their
constructor. This patch allows constructing these classes without an active Target
and adds the missing tests for running without a target that we can do at least
a basic lookup test without crashing.
Summary:
As discussed on the mailing list [1] we have to make a decision for how to proceed with the modern-type-lookup.
This patch removes modern-type-lookup from LLDB. This just removes all the code behind the modern-type-lookup
setting but it does *not* remove any code from Clang (i.e., the ExternalASTMerger and the clang-import-test stay around
for now).
The motivation for this is that I don't think that the current approach of implementing modern-type-lookup
will work out. Especially creating a completely new lookup system behind some setting that is never turned on by anyone
and then one day make one big switch to the new system seems wrong. It doesn't fit into the way LLVM is developed and has
so far made the transition work much more complicated than it has to be.
A lot of the benefits that were supposed to come with the modern-type-lookup are related to having a better organization
in the way types move across LLDB and having less dependencies on unrelated LLDB code. By just looking at the current code (mostly
the ClangASTImporter) I think we can reach the same goals by just incrementally cleaning up, documenting, refactoring
and actually testing the existing code we have.
[1] http://lists.llvm.org/pipermail/lldb-dev/2019-December/015831.html
Reviewers: shafik, martong
Subscribers: rnkovacs, christof, arphaman, JDevlieghere, usaxena95, lldb-commits, friss
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71562
Summary:
D69991 introduced `__attribute__((objc_direct))` that allows directly calling methods without message passing.
This patch adds support for calling methods with this attribute to LLDB's expression evaluator.
The patch can be summarised in that LLDB just adds the same attribute to our module AST when we find a
method with `__attribute__((objc_direct))` in our debug information.
Reviewers: aprantl, shafik
Reviewed By: shafik
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71196
The overloads that don't take a CompilerType serve no purpose as we
always have a CompilerType in the scope where we call them. Instead
just call the overload that takes a CompilerType and delete the
now unused other overloaded methods.
Summary:
Right now, NSException::GetSummary() has the following output:
"name: $exception_name - reason: $exception_reason"
It would be better to simplify the output by removing the name and only
showing the exception's reason. This way, annotations would look nicer in
the editor, and would be a shorter summary in the Variables Inspector.
Accessing the exception's name can still be done by expanding the
NSException object in the Variables Inspector.
rdar://54770115
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71311
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Summary:
LLDB associates additional information with Types and Declarations which it calls ClangASTMetadata.
ClangASTMetadata is stored by the ClangASTSourceCommon which is implemented by having a large map of
`void *` keys to associated `ClangASTMetadata` values. To make this whole mechanism even unsafer
we also decided to use `clang::Decl *` as one of pointers we throw in there (beside `clang::Type *`).
The Decl class hierarchy uses multiple inheritance which means that not all pointers have the
same address when they are implicitly converted to pointers of their parent classes. For example
`clang::Decl *` and `clang::DeclContext *` won't end up being the same address when they
are implicitly converted from one of the many Decl-subclasses that inherit from both.
As we use the addresses as the keys in our Metadata map, this means that any implicit type
conversions to parent classes (or anything else that changes the addresses) will break our metadata tracking
in obscure ways.
Just to illustrate how broken this whole mechanism currently is:
```lang=cpp
// m_ast is our ClangASTContext. Let's double check that from GetTranslationUnitDecl
// in ClangASTContext and ASTContext return the same thing (one method just calls the other).
assert(m_ast->GetTranslationUnitDecl() == m_ast->getASTContext()->getTranslationUnitDecl());
// Ok, both methods have the same TU*. Let's store metadata with the result of one method call.
m_ast->SetMetadataAsUserID(m_ast->GetTranslationUnitDecl(), 1234U);
// Retrieve the same Metadata for the TU by using the TU* from the other method... which fails?
EXPECT_EQ(m_ast->GetMetadata(m_ast->getASTContext()->getTranslationUnitDecl())->GetUserID(), 1234U);
// Turns out that getTranslationUnitDecl one time returns a TranslationUnitDecl* but the other time
// we return one of the parent classes of TranslationUnitDecl (DeclContext).
```
This patch splits up the `void *` API into two where one does the `clang::Type *` tracking and one the `clang::Decl *` mapping.
Type and Decl are disjoint class hierarchies so there is no implicit conversion possible that could influence
the address values.
I had to change the storing of `clang::QualType` opaque pointers to their `clang::Type *` equivalents as
opaque pointers are already `void *` pointers to begin with. We don't seem to ever set any qualifier in any of these
QualTypes to this conversion should be NFC.
Reviewers: labath, shafik, aprantl
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71409
Target doesn't really need to know about ClangASTContext more than any
other TypeSystem. We can create a method ClangASTContext::GetScratch for
anything who needs a ClangASTContext specifically instead of just a
generic TypeSystem.
Summary: Not once have I looked at these numbers in a log and considered them useful. Also this should not have been implemented via an unguarded list of globals.
Reviewers: martong, shafik
Reviewed By: shafik
Subscribers: rnkovacs, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71336
I don't think this test case can be handled correctly on AAPCS64.
The ABI says that the caller passes the address of the return object
in x8. x8 is a caller-spilled (aka "volatile") register, and the
function is not required to preserve x8 or to copy the address back
into x8 on function exit like the SysV x86_64 ABI does with rax.
(from aapcs64: "there is no requirement for the callee to preserve the
value stored in x8")
From my quick reading of ABISysV_arm64, I worry that it may actually be
using the value in x8 at function exit, assuming it still has the
address of the return object -
if (is_return_value) {
// We are assuming we are decoding this immediately after returning from
// a function call and that the address of the structure is in x8
reg_info = reg_ctx->GetRegisterInfoByName("x8", 0);
This will work on trivial test programs / examples, but if the function
does another function call, or overwrites x8 as a scratch register, lldb
will provide incorrect values to the user.
ABIMacOSX_arm64 doesn't do this, but it also doesn't flag the value
as unavailable so we're providing incorrect values to the user all
the time. I expect my fix will be to make ABIMacOSX_arm64 flag
the return value as unretrievable, unless I've misread the ABI.
Summary:
This adds support for DWARF5 location lists which are specified
indirectly, via an index into the debug_loclists offset table. This
includes parsing the DW_AT_loclists_base attribute which determines the
location of this offset table, and support for new form DW_FORM_loclistx
which is used in conjuction with DW_AT_location to refer to the location
lists in this way.
The code uses the llvm class to parse the offset information, and I've
also tried to structure it similarly to how the relevant llvm
functionality works.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71268
As suggested by Pavel in a code review:
> Can we replace this (and maybe python too, while at it) with a
> Host/Config.h entry? A global definition means that one has to
> recompile everything when these change in any way, whereas in
> practice only a handful of files need this..
Differential revision: https://reviews.llvm.org/D71280
When running the test suite with always capture on, a handful of tests
are failing because they have multiple targets and therefore multiple
GDB remote connections. The current reproducer infrastructure is capable
of dealing with that.
This patch reworks the GDB remote provider to support multiple GDB
remote connections, similar to how the reproducers support shadowing
multiple command interpreter inputs. The provider now keeps a list of
packet recorders which deal with a single GDB remote connection. During
replay we rely on the order of creation to match the number of packets
to the GDB remote connection.
Differential revision: https://reviews.llvm.org/D71105
If not set, the address byte size was implied to be the one of the
host process.
This allows reverting the functional change from 31087b2ae9154, since
now PECOFF does the same as ELF and MachO wrt setting both byte order
and address size on m_data within ParseHeader.
Differential Revision: https://reviews.llvm.org/D71108
Summary:
Lldb support base address selection entries in location lists was broken
for a long time. This wasn't noticed until llvm started producing these
kinds of entries more frequently with r374600.
In r374769, I made a quick patch which added sufficient support for them
to get the test suite to pass. However, I did not fully understand how
this code operates, and so the fix was not complete. Specifically, what
was lacking was the ability to handle modules which were not loaded at
their preferred load address (for instance, due to ASLR).
Now that I better understand how this code works, I've come to the
conclusion that the current setup does not provide enough information
to correctly process these entries. In the current setup the location
lists were parameterized by two addresses:
- the distance of the function start from the start of the compile unit.
The purpose of this was to make the location ranges relative to the
start of the function.
- the actual address where the function was loaded at. With this the
function-start-relative ranges can be translated to actual memory
locations.
The reason for the two values, instead of just one (the load bias) is (I
think) MachO, where the debug info in the object files will appear to be
relative to the address zero, but the actual code it refers to
can be moved and reordered by the linker. This means that the location
lists need to be "linked" to reflect the locations in the actual linked
file.
These two bits of information were enough to correctly process location
lists which do not contain base address selection entries (and so all
entries are relative to the CU base). However, they don't work with
them because, in theory two base address can be completely unrelated (as
can happen for instace with hot/cold function splitting, where the
linker can reorder the two pars arbitrarily).
To fix that, I split the first parameter into two:
- the compile unit base address
- the function start address, as is known in the object file
The new algorithm becomes:
- the location lists are processed as they were meant to be processed.
The CU base address is used as the initial base address value. Base
address selection entries can set a new base.
- the difference between the "file" and "load" function start addresses
is used to compute the load bias. This value is added to the final
ranges to get the actual memory location.
This algorithm is correct for non-MachO debug info, as there the
location lists correctly describe the code in the final executable, and
the dynamic linker can just move the entire module, not pieces of it. It
will also be correct for MachO if the static linker preserves relative
positions of the various parts of the location lists -- I don't know
whether it actually does that, but judging by the lack of base address
selection support in dsymutil and lldb, this isn't something that has
come up in the past.
I add a test case which simulates the ASLR scenario and demonstrates
that base address selection entries now work correctly here.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70532
Summary:
This patch adds support for atomic types (DW_TAG_atomic_type) to LLDB. It's mostly just filling out all the switch-statements that didn't implement Atomic case with the usual boilerplate.
Thanks Pavel for writing the test case.
Reviewers: labath, aprantl, shafik
Reviewed By: labath
Subscribers: jfb, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71183
Summary:
This patch simplifies register accesses in NativeRegisterContextLinux_arm64
and also adds some bare minimum caching to avoid multiple calls to ptrace
during a stop.
Linux ptrace returns data in the form of structures containing GPR/FPR data.
This means that one single call is enough to read all GPRs or FPRs. We do
that once per stop and keep reading from or writing to the buffer that we
have in NativeRegisterContextLinux_arm64 class. Before a resume or detach we
write all buffers back.
This is tested on aarch64 thunder x1 with Ubuntu 18.04. Also tested
regressions on x86_64.
Reviewers: labath, clayborg
Reviewed By: labath
Subscribers: kristof.beyls, lldb-commits
Differential Revision: https://reviews.llvm.org/D69371
In DWARF5 DW_AT_low_pc (and DW_AT_entry_pc, and possibly others) can use
DW_FORM_addrx to refer to the address indirectly. This means we need to
have processed the DW_AT_addr_base attribute before we can do anything
with these.
Since we were processing the unit attributes serially, this created a
problem in cases where the DW_AT_addr_base comes after DW_AT_low_pc --
we would end up computing the wrong unit base address, which also
corrupted any values which later depended on that (for instance range
lists). Clang currently always emits DW_AT_addr_base last.
The fix is simple -- process DW_AT_addr_base first, regardless of its
position in the attribute list.
the value of DW_AT_rnglists_base of the skeleton unit is for that unit
alone (e.g. used in DW_AT_ranges of the unit DIE) and should not apply
to the split unit.
The split unit has a hardcoded range list base value -- we should
initialize range list code whenever we detect a nonempty
debug_rnglists.dwo section.
Summary:
Yet another step on the long road towards getting rid of lldb's Stream class.
We probably should just make this some kind of member of Address/AddressRange, but it seems quite often we just push
in random integers in there and this is just about getting rid of Stream and not improving arbitrary APIs.
I had to rename another `DumpAddress` function in FormatEntity that is dumping the content of an address to make Clang happy.
Reviewers: labath
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71052
Summary:
Our rnglist support was working only for the trivial cases (one CU),
because we only ever parsed one contribution out of the debug_rnglists
section. This means we were never able to resolve range lists for the
second and subsequent units (DW_FORM_sec_offset references came out
blang, and DW_FORM_rnglistx references always used the ranges lists from
the first unit).
Since both llvm and lldb rnglist parsers are sufficiently
self-contained, and operate similarly, we can fix this problem by
switching to the llvm parser instead. Besides the changes which are due
to variations in the interface, the main thing is that now the range
list object is a member of the DWARFUnit, instead of the entire symbol
file. This ensures that each unit can get it's own private set of range
list indices, and is consistent with how llvm's DWARFUnit does it
(overall, I've tried to structure the code the same way as the llvm
version).
I've also added a test case for the two unit scenario.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71021
Summary:
This patch adds code which will substitute references to the full object
constructors/destructors with their base object versions.
Like all substitutions in this category, this operation is not really
sound, but doing this in a more precise way allows us to get rid of a
much larger hack -- matching function according to their demangled
names, which effectively does the same thing, but also much more.
This is a (very late) follow-up to D54074.
Background: clang has an optimization which can eliminate full object
structors completely, if they are found to be equivalent to their base
object versions. It does this because it assumes they can be regenerated
on demand in the compile unit that needs them (e.g., because they are
declared inline). However, this doesn't work for the debugging scenario,
where we don't have the structor bodies available -- we pretend all
constructors are defined out-of-line as far as clang is concerned. This
causes clang to emit references to the (nonexisting) full object
structors during expression evaluation.
Fun fact: This is not a problem on darwin, because the relevant
optimization is disabled to work around a linker bug.
Reviewers: teemperor, JDevlieghere
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70721
Summary:
Lldb's "format-independent" debug info made use of the fact that DWARF
(<=4) did not use the file index zero, and reused the support file index
zero for storing the compile unit name.
While this provided some convenience for DWARF<=4, it meant that the PDB
plugin needed to artificially remap file indices in order to free up
index 0. Furthermore, DWARF v5 make file index 0 legal, which meant that
similar remapping would be needed in the dwarf plugin too.
What this patch does instead is remove the requirement of having the
compile unit name in the index 0. It is not that useful since the name
can always be fetched from the CompileUnit object. Remapping code in the
pdb plugin(s) has been removed or simplified.
DWARF plugin has started inserting an empty FileSpec at index 0 to
ensure the indices keep matching up (in case of DWARF<=4). For DWARF5,
we insert the file 0 from the line table.
I add a test to ensure we can correctly lookup line table entries
referencing file 0, and in particular the case where the file 0 is also
duplicated in another file entry, as this is how clang produces line
tables in some circumstances (see pr44170). Though this is probably a
bug in clang, this is not forbidden by DWARF, and lldb already has
support for that in some (but not all) cases -- this adds a test for the
code path which was not fixed in this patch.
Reviewers: clayborg, JDevlieghere, jdoerfert
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70954
Summary:
The FileSpec class is often used as a sort of a pattern -- one specifies
a bare file name to search, and we check if in matches the full file
name of an existing module (for example).
These comparisons used FileSpec::Equal, which had some support for it
(via the full=false argument), but it was not a good fit for this job.
For one, it did a symmetric comparison, which makes sense for a function
called "equal", but not for typical searches (when searching for
"/foo/bar.so", we don't want to find a module whose name is just
"bar.so"). This resulted in patterns like:
if (FileSpec::Equal(pattern, file, pattern.GetDirectory()))
which would request a "full" match only if the pattern really contained
a directory. This worked, but the intended behavior was very unobvious.
On top of that, a lot of the code wanted to handle the case of an
"empty" pattern, and treat it as matching everything. This resulted in
conditions like:
if (pattern && !FileSpec::Equal(pattern, file, pattern.GetDirectory())
which are nearly impossible to decipher.
This patch introduces a FileSpec::Match function, which does exactly
what most of FileSpec::Equal callers want, an asymmetric match between a
"pattern" FileSpec and a an actual FileSpec. Empty paterns match
everything, filename-only patterns match only the filename component.
I've tried to update all callers of FileSpec::Equal to use a simpler
interface. Those that hardcoded full=true have been changed to use
operator==. Those passing full=pattern.GetDirectory() have been changed
to use FileSpec::Match.
There was also a handful of places which hardcoded full=false. I've
changed these to use FileSpec::Match too. This is a slight change in
semantics, but it does not look like that was ever intended, and it was
more likely a result of a misunderstanding of the "proper" way to use
FileSpec::Equal.
[In an ideal world a "FileSpec" and a "FileSpec pattern" would be two
different types, but given how widespread FileSpec is, it is unlikely
we'll get there in one go. This at least provides a good starting point
by centralizing all matching behavior.]
Reviewers: teemperor, JDevlieghere, jdoerfert
Subscribers: emaste, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70851
ParseChildMembers does a few things, only one part is actually parsing a single
member. This extracts the member parsing logic into its own function.
This commit just moves the code as-is into its own function and forwards the parameters/
local variables to it, which means it should be NFC.
The only actual changes to the code are replacing 'break's (and one very curious 'continue'
that behaves like a 'break') with 'return's.
This code was just creating a new SymbolContextList with any found functions
in the front and orders them by how close they are to the current frame.
This refactors this code into its own function to make this more obvious.
Doesn't do any other changes to the code, so this is NFC.
Summary:
Previously the ABI plugin exposed some "register infos" and the
gdb-remote code used those to fill in the missing bits. Now, the
"filling in" code is in the ABI plugin itself, and the gdb-remote code
just invokes that.
The motivation for this is two-fold:
a) the "augmentation" logic is useful outside of process gdb-remote. For
instance, it would allow us to avoid repeating the register number
definitions in minidump code.
b) It gives more implementation freedom to the ABI classes. Now that
these "register infos" are essentially implementation details, classes
can use other methods to obtain dwarf/eh_frame register numbers -- for
instance they can consult llvm MC layer.
Since the augmentation code was not currently tested anywhere, I took
the opportunity to create a simple test for it.
Reviewers: jasonmolenda, clayborg, tatyana-krasnukha
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70906
Extend EmulateMOVRdRm to identify "mov r11, sp" in thumb mode as
setting the frame pointer, if r11 is the frame pointer register.
Differential Revision: https://reviews.llvm.org/D70797
ClangASTSource currently takes a clang::ASTContext and keeps that
around, but a lot of LLDB's functionality for doing operations
on a clang::ASTContext is in its ClangASTContext twin class. We
currently constantly recompute the respective ClangASTContext
from the clang::ASTContext while we instead could just pass and
store a ClangASTContext in the ClangASTSource. This also allows
us to get rid of a bunch of unreachable error checking for cases
where recomputation fails for some reason.
This code is behind a `if (log)` that is always a nullptr as the initializer
was commented out. One could uncomment the initializer code, but then this logging
code just leads to a deadlock as it tries to aquire the module lock.
This removes the logging code until I get this working again.
Summary:
CompileUnit is a complicated class. Having it be implicitly convertible
to a FileSpec makes reasoning about it even harder.
This patch replaces the inheritance by a simple member and an accessor
function. This avoid the need for casting in places where one needed to
force a CompileUnit to be treated as a FileSpec, and does not add much
verbosity elsewhere.
It also fixes a bug where we were wrongly comparing CompileUnit& and a
CompileUnit*, which compiled due to a combination of this inheritance
and the FileSpec*->FileSpec implicit constructor.
Reviewers: teemperor, JDevlieghere, jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70827
COFF section names can either be stored truncated to 8 chars, in the
section header, or as a longer section name, stored separately in the
string table.
libunwind locates the .eh_frame section by runtime introspection,
which only works for section names stored in the section header (as
the string table isn't mapped at runtime). To support this behaviour,
lld always truncates the section names for sections that will be
mapped, like .eh_frame.
Differential Revision: https://reviews.llvm.org/D70745
InitializeContext is useful for allocating a (potentially variable
size) CONTEXT struct in an unaligned byte buffer. In this case, we
already have a fixed size CONTEXT we want to initialize, and we only
used this as a very roundabout way of zero initializing it.
Instead just memset the CONTEXT we have, and set the ContextFlags field
manually.
This matches how it is done in NativeRegisterContextWindows_*.cpp.
This also makes LLDB run successfully in Wine (for a trivial tested
case at least), as Wine hasn't implemented the InitializeContext
function.
Differential Revision: https://reviews.llvm.org/D70742
This way it looks more like the code around it. The assert is also gone as it just
checks that the variables we declare directly above were not initialized by anyone.
That made more sense when this was one large function.
Part of the work to split up this monolithic parsing function.
Should be NFC but due to the kafkaesque control flow in this case statement this might
have some unintended side effects.
Fix handling concurrent watchpoint events so that they are reported
correctly in LLDB.
If multiple watchpoints are hit concurrently, the NetBSD kernel reports
them as series of SIGTRAPs with a thread specified, and the debugger
investigates DR6 in order to establish which watchpoint was hit. This
is normally fine.
However, LLDB disables and reenables the watchpoint on all threads after
each hit, which results in the hit status from DR6 being wiped.
As a result, it can't establish which watchpoint was hit in successive
SIGTRAP processing.
In order to workaround this problem, clear DR6 only if the breakpoint
is overwritten with a new one. More specifically, move cleaning DR6
from ClearHardwareWatchpoint() to SetHardwareWatchpointWithIndex(),
and do that only if the newly requested watchpoint is different
from the one being set previously. This ensures that the disable-enable
logic of LLDB does not clear watchpoint hit status for the remaining
threads.
This also involves refactoring of watchpoint logic. With the old logic,
clearing watchpoint involved wiping dr6 & dr7, and setting it setting
dr{0..3} & dr7. With the new logic, only enable bit is cleared
from dr7, and the remaining bits are cleared/overwritten while setting
new watchpoint.
Differential Revision: https://reviews.llvm.org/D70025
NetBSD ptrace interface does not populate watchpoints to newly-created
threads. Solve this via copying the watchpoints from the current thread
when new thread is reported via TRAP_LWP.
Add a test that verifies that when the user does not have permissions
to set watchpoints on NetBSD, the 'watchpoint set' errors out gracefully
and thread monitoring does not crash on being unable to copy watchpoints
to new threads.
Differential Revision: https://reviews.llvm.org/D70023
Implement major improvements to multithreaded program support. Notably,
support tracking new and exited threads, associate signals and events
with correct threads and support controlling individual threads when
resuming.
Firstly, use PT_SET_EVENT_MASK to enable reporting of created and exited
threads via SIGTRAP. Handle TRAP_LWP events to keep track
of the currently running threads.
Secondly, update the signal (both generic and SIGTRAP) handling code
to account for per-thread signals correctly. Signals delivered
to the whole process are reported on all threads, while per-thread
signals and events are reported only to the specific thread.
The remaining threads are marked as 'stopped with no reason'. Note that
NetBSD always stops all threads on debugger events.
Thirdly, implement the ability to set every thread as running, stopped
or single-stepping separately while continuing the process. This also
provides the ability to send a signal to the whole process or to one
of its thread while resuming.
Differential Revision: https://reviews.llvm.org/D70022
Summary:
Adds support for doing range-based for-loops on LLDB's VariableList and
modernises all the index-based for-loops in LLDB where possible.
Reviewers: labath, jdoerfert
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70668
Summary:
LLDB's ASTDumper is just a clone of Clang's ASTDumper but with some scary code and
some unrelated functionality (like dumping name/attributes of types). This removes LLDB's ASTDumper
and replaces its uses with the `ClangUtils::DumpDecl` method that just calls Clang's ASTDumper
and returns the result as a string.
The few uses where we just want a textual representation of a type (which will print their name/attributes but not
dump any AST) are now also in ClangUtil under a `ToString` name until we find a better home for them.
Reviewers: labath
Reviewed By: labath
Subscribers: mgorny, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70663
Split CallEdge into DirectCallEdge and IndirectCallEdge. Teach
DWARFExpression how to evaluate entry values in cases where the current
activation was created by an indirect call.
rdar://57094085
Differential Revision: https://reviews.llvm.org/D70100
This affects -gmodules only.
Under normal operation pcm_type is a shallow forward declaration
that gets completed later. This is necessary to support cyclic
data structures. If, however, pcm_type is already complete (for
example, because it was loaded for a different target before),
the definition needs to be imported right away, too.
Type::ResolveClangType() effectively ignores the ResolveState
inside type_sp and only looks at IsDefined(), so it never calls
ClangASTImporter::ASTImporterDelegate::ImportDefinitionTo(),
which does extra work for Objective-C classes. This would result
in only the forward declaration to be visible.
An alternative implementation would be to sink this into Type::ResolveClangType ( 88235812a7/lldb/source/Symbol/Type.cpp (L5809)) though it isn't clear to me how to best do this from a layering perspective.
rdar://problem/52134074
Differential Revision: https://reviews.llvm.org/D70415
lldb would silently accept a response to the 'g' packet
(read all registers) which was too large; this handles the
case where it is too small.
Differential Revision: https://reviews.llvm.org/D70417
<rdar://problem/34916465>
Remove hardcoded string prefix length assumption causing issues when
concatenating summary for NSURL in NSURLSummaryProvider. Provider relies
on concatenation of NSStringProvider results for summary, and while the
strings are prefixed with '@' in Objective-C, that is not the case in
Swift causing part of the description to be truncated.
This will be tested in the downstream fork.
Patch by Martin Svensson!
Searching persistent decls is a small subset of the things
FindExternalVisibleDecls does. It should be its own function instead
of being encapsulated in this `do { } while(false);` pattern.
This overload is only used in one place and having static overloads for
all methods that only do an additional clang::ASTContext -> ClangASTContext
conversion is just not sustainable.
Summary:
This is some really shady code. It's supposed to kick in after an expression already failed and then try to look
up "unknown types" that for some undocumented reason can't be resolved during/before parsing. Beside the
fact that we never mark any type as `EVUnknownType` in either swift-lldb or lldb (which means this code is unreachable),
this code doesn't even make the expression evaluation succeed if if would ever be executed but instead seems
to try to load more debug info that maybe any following expression evaluations might succeed.
This patch removes ClangExpressionDeclMap::ResolveUnknownTypes and the related data structures/checks/calls.
Reviewers: davide
Reviewed By: davide
Subscribers: aprantl, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70388
Due to alginment and packing using separate members takes up the same
amount of space, but makes it far less cumbersome to deal with it in
constructors etc.
Implement thread name getting sysctl() on NetBSD. Also fix
the incorrect type in pthread_setname_np() in the relevant test.
Differential Revision: https://reviews.llvm.org/D70363
Builtins are rarely if ever accessed via the Preprocessor. They are
typically found on the ASTContext, so there should be no performance
penalty to using a pointer indirection to store the builtin context.
Three uses of try_lock intentionally ignore the result, as explained in
the comment. Make that explicit with a void cast.
Add what appears to be a missing return in the clang expression parser
code. It's a functional change, but presumably the right one.
Differential Revision: https://reviews.llvm.org/D70281
This feature is mostly there to aid debugging of Clang module issues,
since the only useful actual the end-user can to is to recompile their
program.
Differential Revision: https://reviews.llvm.org/D70272
I wanted to further simplify ParseTypeFromClangModule by replacing the
hand-rolled loop with ForEachExternalModule, and then realized that
ForEachExternalModule also had the problem of visiting the same leaf
node an exponential number of times in the worst-case. This adds a set
of searched_symbol_files set to the function as well as the ability to
early-exit from it.
Differential Revision: https://reviews.llvm.org/D70215
The test was failing due to a bug in SymbolFileDWARF::FindFunctions --
the function was searching the main dwarf unit for DW_TAG_subprograms,
but the main unit is empty in case of split dwarf. The fix is simple --
search the non-skeleton unit instead.
This bug went unnoticed because this function is expensive, and so one
generally avoids calling it.
Summary:
Clang's raw Lexer doesn't produce any tokens for trailing backslashes in a line. This doesn't work with
LLDB's Clang highlighter which builds the source code to display from the list of tokens the Lexer returns.
This causes that lines with trailing backslashes are lacking the backslash and the following newline when
rendering source code in LLDB.
This patch removes the trailing newline from the current line we are highlighting. This way Clang doesn't
drop the backslash token and we just restore the newline after tokenising.
Fixes rdar://57091487
Reviewers: JDevlieghere, labath
Reviewed By: JDevlieghere, labath
Subscribers: labath, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70177