Commit Graph

261 Commits

Author SHA1 Message Date
Leonard Chan 0bada7ce6c [Intrinsic] Signed Fixed Point Saturation Multiplication Intrinsic
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them. The
result is saturated and clamped between the largest and smallest representable
values of the first 2 operands.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D55720

llvm-svn: 361289
2019-05-21 19:17:19 +00:00
Adhemerval Zanella 73643b5041 [CodeGen] Add lround/llround builtins
This patch add the ISD::LROUND and ISD::LLROUND along with new
intrinsics.  The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.

The idea is to optimize lround/llround generation for AArch64
in a subsequent patch.  Current semantic is just route it to libm
symbol.

llvm-svn: 360889
2019-05-16 13:15:27 +00:00
Bjorn Pettersson 8d19e94f13 [CodeGen] Use "DL.getPointerSizeInBits" instead of "8 * DL.getPointerSize". NFC
llvm-svn: 360315
2019-05-09 08:07:36 +00:00
Sanjay Patel 284472be6d [SelectionDAG] remove constant folding limitations based on FP exceptions
We don't have FP exception limits in the IR constant folder for the binops (apart from strict ops),
so it does not make sense to have them here in the DAG either. Nothing else in the backend tries
to preserve exceptions (again outside of strict ops), so I don't see how this could have ever
worked for real code that cares about FP exceptions.

There are still cases (examples: unary opcodes in SDAG, FMA in IR) where we are trying (at least
partially) to preserve exceptions without even asking if the target supports FP exceptions. Those
should be corrected in subsequent patches.

Real support for FP exceptions requires several changes to handle the constrained/strict FP ops.

Differential Revision: https://reviews.llvm.org/D61331

llvm-svn: 359791
2019-05-02 14:47:59 +00:00
Evandro Menezes 0f797b8732 [CodeGen] Refactor the option for the maximum jump table size
Refactor the option `max-jump-table-size` to default to the maximum
representable number.  Essentially, NFC.

llvm-svn: 357280
2019-03-29 17:28:11 +00:00
Philip Reames 18408d5e79 [CodeGen] Add MMOs to statepoint nodes during SelectionDAG
The existing statepoint lowering code does something odd; it adds machine memory operands post instruction selection. This was copied from the stackmap/patchpoint implementation, but appears to be non-idiomatic.

This change is largely NFC. It moves the MMO creation logic into SelectionDAG building. It ends up not quite being NFC because the size of the stack slot is reflected in the MMO. The old code blindly used pointer size for the MMO size, which appears to have always been incorrect for larger values. It just happened nothing actually relied on the MMOs, so it worked out okay.

For context, I'm planning on removing the MOVolatile flag from these in a future commit, and then removing the MOStore flag from deopt spill slots in a separate one. Doing so is motivated by a small test case where we should be able to better schedule spill slots, but don't do so due to a memory use/def implied by the statepoint.

Differential Revision: https://reviews.llvm.org/D59106

llvm-svn: 355953
2019-03-12 19:12:33 +00:00
Nikita Popov aa7cfa75f9 [SDAG][AArch64] Legalize VECREDUCE
Fixes https://bugs.llvm.org/show_bug.cgi?id=36796.

Implement basic legalizations (PromoteIntRes, PromoteIntOp,
ExpandIntRes, ScalarizeVecOp, WidenVecOp) for VECREDUCE opcodes.
There are more legalizations missing (esp float legalizations),
but there's no way to test them right now, so I'm not adding them.

This also includes a few more changes to make this work somewhat
reasonably:

 * Add support for expanding VECREDUCE in SDAG. Usually
   experimental.vector.reduce is expanded prior to codegen, but if the
   target does have native vector reduce, it may of course still be
   necessary to expand due to legalization issues. This uses a shuffle
   reduction if possible, followed by a naive scalar reduction.
 * Allow the result type of integer VECREDUCE to be larger than the
   vector element type. For example we need to be able to reduce a v8i8
   into an (nominally) i32 result type on AArch64.
 * Use the vector operand type rather than the scalar result type to
   determine the action, so we can control exactly which vector types are
   supported. Also change the legalize vector op code to handle
   operations that only have vector operands, but no vector results, as
   is the case for VECREDUCE.
 * Default VECREDUCE to Expand. On AArch64 (only target using VECREDUCE),
   explicitly specify for which vector types the reductions are supported.

This does not handle anything related to VECREDUCE_STRICT_*.

Differential Revision: https://reviews.llvm.org/D58015

llvm-svn: 355860
2019-03-11 20:22:13 +00:00
Craig Topper 784929d045 Implementation of asm-goto support in LLVM
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html

This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.

This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.

There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.

Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii

Differential Revision: https://reviews.llvm.org/D53765

llvm-svn: 353563
2019-02-08 20:48:56 +00:00
Leonard Chan 68d428e578 [Intrinsic] Unsigned Fixed Point Multiplication Intrinsic
Add an intrinsic that takes 2 unsigned integers with the scale of them
provided as the third argument and performs fixed point multiplication on
them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D55625

llvm-svn: 353059
2019-02-04 17:18:11 +00:00
James Y Knight 7976eb5838 [opaque pointer types] Pass function types to CallInst creation.
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.

Differential Revision: https://reviews.llvm.org/D57170

llvm-svn: 352909
2019-02-01 20:43:25 +00:00
James Y Knight 13680223b9 [opaque pointer types] Add a FunctionCallee wrapper type, and use it.
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.

Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.

Then:
- update the CallInst/InvokeInst instruction creation functions to
  take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.

One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.

However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)

Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.

Differential Revision: https://reviews.llvm.org/D57315

llvm-svn: 352827
2019-02-01 02:28:03 +00:00
James Y Knight fadf25068e Revert "[opaque pointer types] Add a FunctionCallee wrapper type, and use it."
This reverts commit f47d6b38c7 (r352791).

Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.

llvm-svn: 352800
2019-01-31 21:51:58 +00:00
James Y Knight f47d6b38c7 [opaque pointer types] Add a FunctionCallee wrapper type, and use it.
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.

Then:
- update the CallInst/InvokeInst instruction creation functions to
  take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.

One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.

However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)

Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.

Differential Revision: https://reviews.llvm.org/D57315

llvm-svn: 352791
2019-01-31 20:35:56 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Matt Arsenault 0cb08e448a Allow FP types for atomicrmw xchg
llvm-svn: 351427
2019-01-17 10:49:01 +00:00
Leonard Chan 118e53fd63 [Intrinsic] Signed Fixed Point Multiplication Intrinsic
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D54719

llvm-svn: 348912
2018-12-12 06:29:14 +00:00
Simon Pilgrim 180639afe5 [SelectionDAG] Initial support for FSHL/FSHR funnel shift opcodes (PR39467)
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.

Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.

Differential Revision: https://reviews.llvm.org/D54698

llvm-svn: 348353
2018-12-05 11:12:12 +00:00
Cameron McInally cbde0d9c7b [IR] Add a dedicated FNeg IR Instruction
The IEEE-754 Standard makes it clear that fneg(x) and
fsub(-0.0, x) are two different operations. The former is a bitwise
operation, while the latter is an arithmetic operation. This patch
creates a dedicated FNeg IR Instruction to model that behavior.

Differential Revision: https://reviews.llvm.org/D53877

llvm-svn: 346774
2018-11-13 18:15:47 +00:00
Serge Guelton a4d9e2293a Fix ignorded type qualifier warning [NFC]
llvm-svn: 346332
2018-11-07 16:17:30 +00:00
Leonard Chan 905abe5b5d [Intrinsic] Signed and Unsigned Saturation Subtraction Intirnsics
Add an intrinsic that takes 2 integers and perform saturation subtraction on
them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53783

llvm-svn: 345512
2018-10-29 16:54:37 +00:00
Thomas Lively 30f1d69115 [NFC] Rename minnan and maxnan to minimum and maximum
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.

Reviewers: arsenm, aheejin, dschuff, javed.absar

Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits

Differential Revision: https://reviews.llvm.org/D53112

llvm-svn: 345218
2018-10-24 22:49:55 +00:00
Leonard Chan 0acfc6be38 [Intrinsic] Unigned Saturation Addition Intrinsic
Add an intrinsic that takes 2 integers and perform unsigned saturation
addition on them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53340

llvm-svn: 344971
2018-10-22 23:08:40 +00:00
Matt Arsenault 687ec75d10 DAG: Change behavior of fminnum/fmaxnum nodes
Introduce new versions that follow the IEEE semantics
to help with legalization that may need quieted inputs.

There are some regressions from inserting unnecessary
canonicalizes when these are matched from fast math
fcmp + select which should be fixed in a future commit.

llvm-svn: 344914
2018-10-22 16:27:27 +00:00
Leonard Chan 699b3b54da [Intrinsic] Signed Saturation Addition Intrinsic
Add an intrinsic that takes 2 integers and perform saturation addition on them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53053

llvm-svn: 344629
2018-10-16 17:35:41 +00:00
John Brawn 83d7414e19 [TargetLowering] Android has sincos functions
Since Android API version 9 the Android libm has had the sincos functions, so
they should be recognised as libcalls and sincos optimisation should be applied.

Differential Revision: https://reviews.llvm.org/D52025

llvm-svn: 342471
2018-09-18 13:18:21 +00:00
Sanjay Patel 3eaf500a6d [DAGCombiner] try to convert pow(x, 1/3) to cbrt(x)
This is a follow-up suggested in D51630 and originally proposed as an IR transform in D49040.

Copying the motivational statement by @evandro from that patch:
"This transformation helps some benchmarks in SPEC CPU2000 and CPU2006, such as 188.ammp, 
447.dealII, 453.povray, and especially 300.twolf, as well as some proprietary benchmarks. 
Otherwise, no regressions on x86-64 or A64."

I'm proposing to add only the minimum support for a DAG node here. Since we don't have an 
LLVM IR intrinsic for cbrt, and there are no other DAG ways to create a FCBRT node yet, I 
don't think we need to worry about DAG builder, legalization, a strict variant, etc. We 
should be able to expand as needed when adding more functionality/transforms. For reference, 
these are transform suggestions currently listed in SimplifyLibCalls.cpp:

//   * cbrt(expN(X))  -> expN(x/3)
//   * cbrt(sqrt(x))  -> pow(x,1/6)
//   * cbrt(cbrt(x))  -> pow(x,1/9)

Also, given that we bail out on long double for now, there should not be any logical 
differences between platforms (unless there's some platform out there that has pow()
but not cbrt()).

Differential Revision: https://reviews.llvm.org/D51753

llvm-svn: 342348
2018-09-16 16:50:26 +00:00
Chandler Carruth c73c0307fe [MI] Change the array of `MachineMemOperand` pointers to be
a generically extensible collection of extra info attached to
a `MachineInstr`.

The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.

Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.

I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).

Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.

This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.

The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.

Differential Revision: https://reviews.llvm.org/D50701

llvm-svn: 339940
2018-08-16 21:30:05 +00:00
Fangrui Song f78650a8de Remove trailing space
sed -Ei 's/[[:space:]]+$//' include/**/*.{def,h,td} lib/**/*.{cpp,h}

llvm-svn: 338293
2018-07-30 19:41:25 +00:00
Matt Arsenault 81920b0a25 DAG: Add calling convention argument to calling convention funcs
This seems like a pretty glaring omission, and AMDGPU
wants to treat kernels differently from other calling
conventions.

llvm-svn: 338194
2018-07-28 13:25:19 +00:00
Peter Collingbourne e06bac4796 Put "built-in" function definitions in global Used list, for LTO. (fix bug 34169)
When building with LTO, builtin functions that are defined but whose calls have not been inserted yet, get internalized. The Global Dead Code Elimination phase in the new LTO implementation then removes these function definitions. Later optimizations add calls to those functions, and the linker then dies complaining that there are no definitions. This CL fixes the new LTO implementation to check if a function is builtin, and if so, to not internalize (and later DCE) the function. As part of this fix I needed to move the RuntimeLibcalls.{def,h} files from the CodeGen subidrectory to the IR subdirectory. I have updated all the files that accessed those two files to access their new location.

Fixes PR34169

Patch by Caroline Tice!

Differential Revision: https://reviews.llvm.org/D49434

llvm-svn: 337847
2018-07-24 19:34:37 +00:00
Amaury Sechet 8467411dad Set ADDE/ADDC/SUBE/SUBC to expand by default
Summary:
They've been deprecated in favor of UADDO/ADDCARRY or USUBO/SUBCARRY for a while.

Target that uses these opcodes are changed in order to ensure their behavior doesn't change.

Reviewers: efriedma, craig.topper, dblaikie, bkramer

Subscribers: jholewinski, arsenm, jyknight, sdardis, nemanjai, nhaehnle, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, llvm-commits

Differential Revision: https://reviews.llvm.org/D47422

llvm-svn: 333748
2018-06-01 13:21:33 +00:00
Sirish Pande cabe50a308 [AArch64] Gangup loads and stores for pairing.
Keep loads and stores together (target defines how many loads
and stores to gang up), such that it will help in pairing
and vectorization.

Differential Revision https://reviews.llvm.org/D46477

llvm-svn: 332482
2018-05-16 15:36:52 +00:00
Craig Topper 7413b322ea [TargetLowering] Use StringRef::split instead of SplitString. NFC
SplitString splits based on a list of delimeters, but we're only using one delimeter so we should use the simpler split.

llvm-svn: 331613
2018-05-07 01:32:18 +00:00
Eli Friedman 0644130612 [AArch64] Don't crash trying to resolve __stack_chk_guard.
In certain cases, the compiler might try to merge __stack_chk_guard with
another global variable.  (Or someone could theoretically define
__stack_chk_guard as an alias.)  In that case, make sure we don't crash.

Differential Revision: https://reviews.llvm.org/D45746

llvm-svn: 330495
2018-04-21 00:07:46 +00:00
Keith Wyss 3d86823f3d [XRay] Typed event logging intrinsic
Summary:
Add an LLVM intrinsic for type discriminated event logging with XRay.
Similar to the existing intrinsic for custom events, but also accepts
a type tag argument to allow plugins to be aware of different types
and semantically interpret logged events they know about without
choking on those they don't.

Relies on a symbol defined in compiler-rt patch D43668. I may wait
to submit before I can see demo everything working together including
a still to come clang patch.

Reviewers: dberris, pelikan, eizan, rSerge, timshen

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D45633

llvm-svn: 330219
2018-04-17 21:30:29 +00:00
Craig Topper 2fa1436206 [IR][CodeGen] Remove dependency on EVT from IR/Function.cpp. Move EVT to CodeGen layer.
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.

The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.

Differential Revision: https://reviews.llvm.org/D45017

llvm-svn: 328806
2018-03-29 17:21:10 +00:00
David Blaikie 36a0f226b1 Fix layering by moving ValueTypes.h from CodeGen to IR
ValueTypes.h is implemented in IR already.

llvm-svn: 328397
2018-03-23 23:58:31 +00:00
David Blaikie 13e77db2df Fix layering of MachineValueType.h by moving it from CodeGen to Support
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)

llvm-svn: 328395
2018-03-23 23:58:25 +00:00
Craig Topper 35801fa5ce [SelectionDAG] Add LegalTypes flag to getShiftAmountTy. Use it to unify and simplify DAGCombiner and simplifySetCC code and fix a bug.
DAGCombiner and SimplifySetCC both use getPointerTy for shift amounts pre-legalization. DAGCombiner uses a single helper function to hide this. SimplifySetCC does it in multiple places.

This patch adds a defaulted parameter to getShiftAmountTy that can make it return getPointerTy for scalar types. Use this parameter to simplify the SimplifySetCC and DAGCombiner.

Additionally, there were two places in SimplifySetCC that were creating shifts using the target's preferred shift amount pre-legalization. If the target uses a narrow type and the type is illegal, this can cause SimplfiySetCC to create a shift with an amount that can't represent all possible shift values for the type. To fix this we should use pointer type there too.

Alternatively we could make getScalarShiftAmountTy for each target return a safe value for large types as proposed in D43445. And maybe we should still do that, but fixing the SimplifySetCC code keeps other targets from tripping over this in the future.

Fixes PR36250.

Differential Revision: https://reviews.llvm.org/D43449

llvm-svn: 325602
2018-02-20 17:41:05 +00:00
Dean Michael Berris cdca0730be [XRay][compiler-rt+llvm] Update XRay register stashing semantics
Summary:
This change expands the amount of registers stashed by the entry and
`__xray_CustomEvent` trampolines.

We've found that since the `__xray_CustomEvent` trampoline calls can show up in
situations where the scratch registers are being used, and since we don't
typically want to affect the code-gen around the disabled
`__xray_customevent(...)` intrinsic calls, that we need to save and restore the
state of even the scratch registers in the handling of these custom events.

Reviewers: pcc, pelikan, dblaikie, eizan, kpw, echristo, chandlerc

Reviewed By: echristo

Subscribers: chandlerc, echristo, hiraditya, davide, dblaikie, llvm-commits

Differential Revision: https://reviews.llvm.org/D40894

llvm-svn: 323940
2018-02-01 02:21:54 +00:00
Benjamin Kramer 8b1986b5cb Add support for emitting libcalls for x86_fp80 -> fp128 and vice-versa
compiler_rt doesn't provide them (yet), but libgcc does. PR34076.

llvm-svn: 322772
2018-01-17 22:29:16 +00:00
Matthias Braun 725ad0eee0 TargetLoweringBase: The ios simulator has no bzero function.
Make sure I really get back to the beahvior before my rewrite in r321035
which turned out not to be completely NFC as I changed the behavior for
the ios simulator environment.

llvm-svn: 322223
2018-01-10 20:49:57 +00:00
Matthias Braun d2d7fb63f7 TargetLoweringBase: Fix darwinHasSinCos()
Another followup to my refactoring in r321036: Turns out we can end up
with an x86 darwin target that is not macos (simulator triples can look
like i386-apple-ios) so we need the x86/32bit check in all cases.

llvm-svn: 321104
2017-12-19 20:24:12 +00:00
Matthias Braun e29c0b8862 TargetLoweringBase: Followup to r321035
I missed some prefixes and the fact that on AArch64 we use "bzero"
instead of "__bzero" as on X86 when doing my refactoring in r321035.

Improve tests for bzero.

llvm-svn: 321046
2017-12-19 00:43:00 +00:00
Matthias Braun 92de8b2405 TargetLowering: Fix InitLibcallCallingConvs() overriding things set in InitLibcalls()
I missed the fact that the later called InitLibcallCallingConvs()
overrides some things set in InitLibcalls() when I did the refactoring
in r321036.

Fix by merging InitLibcallCallingConvs() into InitLibcalls() and doing
the initialization earlier.

llvm-svn: 321045
2017-12-19 00:20:33 +00:00
Matthias Braun 0282091c9f TargetLoweringBase: Remove unnecessary watchos exception; NFC
WatchOS isn't report as iOS (as opposed to tvos) so the exception I
added in my last commit wasn't necessary after all.

llvm-svn: 321041
2017-12-18 23:33:28 +00:00
Matthias Braun a4852d2c19 X86/AArch64/ARM: Factor out common sincos_stret logic; NFCI
Note:
- X86ISelLowering: setLibcallName(SINCOS) was superfluous as
  InitLibcalls() already does it.
- ARMISelLowering: Setting libcallnames for sincos/sincosf seemed
  superfluous as in the darwin case it wouldn't be used while for all
  other cases InitLibcalls already does it.

llvm-svn: 321036
2017-12-18 23:19:42 +00:00
Matthias Braun a92cecfbda AArch64/X86: Factor out common bzero logic; NFC
llvm-svn: 321035
2017-12-18 23:14:28 +00:00
Matthias Braun f1caa2833f MachineFunction: Return reference from getFunction(); NFC
The Function can never be nullptr so we can return a reference.

llvm-svn: 320884
2017-12-15 22:22:58 +00:00
Dylan McKay 80463fe64d Relax unaligned access assertion when type is byte aligned
Summary:
This relaxes an assertion inside SelectionDAGBuilder which is overly
restrictive on targets which have no concept of alignment (such as AVR).

In these architectures, all types are aligned to 8-bits.

After this, LLVM will only assert that accesses are aligned on targets
which actually require alignment.

This patch follows from a discussion on llvm-dev a few months ago
http://llvm.1065342.n5.nabble.com/llvm-dev-Unaligned-atomic-load-store-td112815.html

Reviewers: bogner, nemanjai, joerg, efriedma

Reviewed By: efriedma

Subscribers: efriedma, cactus, llvm-commits

Differential Revision: https://reviews.llvm.org/D39946

llvm-svn: 320243
2017-12-09 06:45:36 +00:00