This removes a hardcoded list of instructions in the CodeEmitter. Eventually I intend to remove the predicates on the affected instructions since in any given mode two of them are valid if we supported addr32/addr16 prefixes in the assembler.
llvm-svn: 224809
Summary: As a side-quest for D6629 jvoung pointed out that I should use -verify-machineinstrs and this found a bug in x86-32's handling of EFLAGS for PUSHF/POPF. This patch fixes the use/def, and adds -verify-machineinstrs to all x86 tests which contain 'EFLAGS'. One exception: this patch leaves inline-asm-fpstack.ll as-is because it fails -verify-machineinstrs in a way unrelated to EFLAGS. This patch also modifies cmpxchg-clobber-flags.ll along the lines of what D6629 already does by also testing i386.
Test Plan: ninja check
Reviewers: t.p.northover, jvoung
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6687
llvm-svn: 224359
This is a fix for PR21709 ( http://llvm.org/bugs/show_bug.cgi?id=21709 ).
When we have 2 consecutive 16-byte loads that are merged into one 32-byte vector,
we can use a single 32-byte load instead.
But we don't do this for SandyBridge / IvyBridge because they have slower 32-byte memops.
We also don't bother using 32-byte *integer* loads on a machine that only has AVX1 (btver2)
because those operands would have to be split in half anyway since there is no support for
32-byte integer math ops.
Differential Revision: http://reviews.llvm.org/D6492
llvm-svn: 224344
Teach ISel how to match a TZCNT/LZCNT from a conditional move if the
condition code is X86_COND_NE.
Existing tablegen patterns only allowed to match TZCNT/LZCNT from a
X86cond with condition code equal to X86_COND_E. To avoid introducing
extra rules, I added an 'ImmLeaf' definition that checks if the
condition code is COND_E or COND_NE.
llvm-svn: 223668
In AVX512f we support 64x2 and 32x8 inserts via matching them to 32x4 and 64x4
respectively. These are matched by "Alt" Pat<>'s (Alt stands for alternative
VTs).
Since DQ has native support for these intructions, I peeled off the non-"Alt"
part of the baseclass into vinsert_for_size_no_alt. The DQ instructions are
derived from this multiclass. The "Alt" Pat<>'s are disabled with DQ.
Fixes <rdar://problem/18426089>
llvm-svn: 219874
perform a load to use blendps rather than movss when it is available.
For non-loads, blendps is *much* faster. It can execute on two ports in
Sandy Bridge and Ivy Bridge, and *three* ports on Haswell. This fixes
one of the "regressions" from aggressively taking the "insertion" path
in the new vector shuffle lowering.
This does highlight one problem with blendps -- it isn't commuted as
heavily as it should be. That's future work though.
llvm-svn: 219022
Summary:
Update segmented-stacks*.ll tests with x32 target case and make
corresponding changes to make them pass.
Test Plan: tests updated with x32 target
Reviewers: nadav, rafael, dschuff
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D5245
llvm-svn: 218247
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
llvm-svn: 217310
Added avx512_movnt_vl multiclass for handling 256/128-bit forms of instruction.
Added encoding and lowering tests.
Reviewed by Elena Demikhovsky <elena.demikhovsky@intel.com>
llvm-svn: 215536
This allows assembling the two new instructions, encls and enclu for the
SKX processor model.
Note the diffs are a bigger than what might think, but to fit the new
MRM_CF and MRM_D7 in things in the right places things had to be
renumbered and shuffled down causing a bit more diffs.
rdar://16228228
llvm-svn: 214460
The logic for expanding atomics that aren't natively supported in
terms of cmpxchg loops is much simpler to express at the IR level. It
also allows the normal optimisations and CodeGen improvements to help
out with atomics, instead of using a limited set of possible
instructions..
rdar://problem/13496295
llvm-svn: 212119
This patch adds support for a new builtin instruction called
__builtin_ia32_rdpmc.
Builtin '__builtin_ia32_rdpmc' is defined as a 'GCC builtin'; on X86, it can
be used to read performance monitoring counters. It takes as input the index
of the performance counter to read, and returns the value of the specified
performance counter as a 64-bit number.
Calls to this new builtin will map to instruction RDPMC.
The index in input to the builtin call is moved to register %ECX. The result
of the builtin call is the value of the specified performance counter (RDPMC
would return that quantity in registers RDX:RAX).
This patch:
- Adds builtin int_x86_rdpmc as a GCCBuiltin;
- Adds a new x86 DAG node called 'RDPMC_DAG';
- Teaches how to lower this new builtin;
- Adds an ISel pattern to select instruction RDPMC;
- Fixes the definition of instruction RDPMC adding %RAX and %RDX as
implicit definitions, and adding %ECX as implicit use;
- Adds a LLVM test to verify that the new builtin is correctly selected.
llvm-svn: 212049
According to Intel Software Optimization Manual
on Silvermont INC or DEC instructions require
an additional uop to merge the flags.
As a result, a branch instruction depending
on an INC or a DEC instruction incurs a 1 cycle penalty.
Differential Revision: http://reviews.llvm.org/D3990
llvm-svn: 210466
Instructions TZCNT (requires BMI1) and LZCNT (requires LZCNT), always
provide the operand size as output if the input operand is zero.
We can take advantage of this knowledge during instruction selection
stage in order to simplify a few corner case.
llvm-svn: 209159
In AT&T syntax, we should probably print the full "movl" or "movw". TableGen
used to ignore these aliases because it was miscounting the number of operands.
This fixes the issue.
This will be tested when the TableGen "should I print this Alias"
heuristic is fixed (very soon).
llvm-svn: 208963
Previously, TableGen assumed that every aliased operand consumed precisely 1
MachineInstr slot (this was reasonable because until a couple of days ago,
nothing more complicated was eligible for printing).
This allows a couple more ARM64 aliases to print so we can remove the special
code.
On the X86 side, I've gone for explicit AT&T size specifiers as the default, so
turned off a few of the aliases that would have just started printing.
llvm-svn: 208880
This patch:
- Adds two new X86 builtin intrinsics ('int_x86_rdtsc' and
'int_x86_rdtscp') as GCCBuiltin intrinsics;
- Teaches the backend how to lower the two new builtins;
- Introduces a common function to lower READCYCLECOUNTER dag nodes
and the two new rdtsc/rdtscp intrinsics;
- Improves (and extends) the existing x86 test 'rdtsc.ll'; now test 'rdtsc.ll'
correctly verifies that both READCYCLECOUNTER and the two new intrinsics
work fine for both 64bit and 32bit Subtargets.
llvm-svn: 207127
A simple register copy on X86 is just 3 bytes, whereas movabsq is a 10 byte
instruction. Marking movabsq as not beeing cheap will allow LICM to move it
out of the loop and it also prevents unnecessary rematerializations if the
value is needed in more than one register.
llvm-svn: 201377
Original commits messages:
Add MRMXr/MRMXm form to X86 for use by instructions which treat the 'reg' field of modrm byte as a don't care value. Will allow for simplification of disassembler code.
Simplify a bunch of code by removing the need for the x86 disassembler table builder to know about extended opcodes. The modrm forms are sufficient to convey the information.
llvm-svn: 201065
r201059 appears to cause a crash in a bootstrapped build of clang. Craig
isn't available to look at it right now, so I'm reverting it while he
investigates.
llvm-svn: 201064
These should end up (in ELF) as R_X86_64_32S relocs, not R_X86_64_32.
Kill the horrid and incomplete special case and FIXME in
EncodeInstruction() and set things up so it can infer the signedness
from the ImmType just like it can the size and whether it's PC-relative.
llvm-svn: 200495
The disassembler has a special case for 'L' vs. 'W' in its heuristic for
checking for 32-bit and 16-bit equivalents. We could expand the heuristic,
but better just to be consistent in using the 'L' suffix.
llvm-svn: 199652
This finishes the job started in r198756, and creates separate opcodes for
64-bit vs. 32-bit versions of the rest of the RET instructions too.
LRETL/LRETQ are interesting... I can't see any justification for their
existence in the SDM. There should be no 'LRETL' in 64-bit mode, and no
need for a REX.W prefix for LRETQ. But this is what GAS does, and my
Sandybridge CPU and an Opteron 6376 concur when tested as follows:
asm __volatile__("pushq $0x1234\nmovq $0x33,%rax\nsalq $32,%rax\norq $1f,%rax\npushq %rax\nlretl $8\n1:");
asm __volatile__("pushq $1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
asm __volatile__("pushq $0x33\npushq $1f\nlretq\n1:");
asm __volatile__("pushq $0x1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
cf. PR8592 and commit r118903, which added LRETQ. I only added LRETIQ to
match it.
I don't quite understand how the Intel syntax parsing for ret
instructions is working, despite r154468 allegedly fixing it. Aren't the
explicitly sized 'retw', 'retd' and 'retq' supposed to work? I have at
least made the 'lretq' work with (and indeed *require*) the 'q'.
llvm-svn: 199106
It seems there is no separate instruction class for having AdSize *and*
OpSize bits set, which is required in order to disambiguate between all
these instructions. So add that to the disassembler.
Hm, perhaps we do need an AdSize16 bit after all?
llvm-svn: 198759
I couldn't see how to do this sanely without splitting RETQ from RETL.
Eric says: "sad about the inability to roundtrip them now, but...".
I have no idea what that means, but perhaps it wants preserving in the
commit comment.
llvm-svn: 198756
This fixes the bulk of 16-bit output, and the corresponding test case
x86-16.s now looks mostly like the x86-32.s test case that it was
originally based on. A few irrelevant instructions have been dropped,
and there are still some corner cases to be fixed in subsequent patches.
llvm-svn: 198752
This is not really expected to work right yet. Mostly because we will
still emit the OpSize (0x66) prefix in all the wrong places, along with
a number of other corner cases. Those will all be fixed in the subsequent
commits.
Patch from David Woodhouse.
llvm-svn: 198584
That's what it actually means, and with 16-bit support it's going to be
a little more relevant since in a few corner cases we may actually want
to distinguish between 16-bit and 32-bit mode (for example the bare 'push'
aliases to pushw/pushl etc.)
Patch by David Woodhouse
llvm-svn: 197768
Added scalar compare VCMPSS, VCMPSD.
Implemented LowerSELECT for scalar FP operations.
I replaced FSETCCss, FSETCCsd with one node type FSETCCs.
Node extract_vector_elt(v16i1/v8i1, idx) returns an element of type i1.
llvm-svn: 197384
I moved a test from avx512-vbroadcast-crash.ll to avx512-vbroadcast.ll
I defined HasAVX512 predicate as AssemblerPredicate. It means that you should invoke llvm-mc with "-mcpu=knl" to get encoding for AVX-512 instructions. I need this to let AsmMatcher to set different encoding for AVX and AVX-512 instructions that have the same mnemonic and operands (all scalar instructions).
llvm-svn: 197041
bulldozer and piledriver. Support for the instruction itself seems to have
already been added in r178040.
Differential Revision: http://llvm-reviews.chandlerc.com/D1933
llvm-svn: 192828
Implements Instruction scheduler latencies for Silvermont,
using latencies from the Intel Silvermont Optimization Guide.
Auto detects SLM.
Turns on post RA scheduler when generating code for SLM.
llvm-svn: 190717
Add basic assembly/disassembly support for the first Intel SHA
instruction 'sha1rnds4'. Also includes feature flag, and test cases.
Support for the remaining instructions will follow in a separate patch.
llvm-svn: 190611
-Assembly parser now properly check the size of the memory operation specified in intel syntax. So 'mov word ptr [5], al' is no longer accepted.
-x86-32 disassembly of these instructions no longer sign extends the 32-bit address immediate based on size.
-Intel syntax printing prints the ptr size and places brackets around the address immediate.
Known remaining issues with these instructions:
-Segment override prefix is not supported. PR16962 and PR16961.
-Immediate size should be changed by address size prefix.
llvm-svn: 189201
All insertf*/extractf* functions replaced with insert/extract since we have insertf and inserti forms.
Added lowering for INSERT_VECTOR_ELT / EXTRACT_VECTOR_ELT for 512-bit vectors.
Added lowering for EXTRACT/INSERT subvector for 512-bit vectors.
Added a test.
llvm-svn: 187491
This makes them consistent with 'bt' which already had this handling. gas has the same behavior. There have been discussions on the mailing list about determining size based on the immediate, but my goal here was just to remove the inconsistency.
llvm-svn: 186904
It only didn't use it before because it seems InstAlias handling in the asm printer fails to count tied operands so it tried to find an xor with 2 operands instead of the 3 it wfails to count tied.
llvm-svn: 186900
Previously LEA64_32r went through virtually the entire backend thinking it was
using 32-bit registers until its blissful illusions were cruelly snatched away
by MCInstLower and 64-bit equivalents were substituted at the last minute.
This patch makes it behave normally, and take 64-bit registers as sources all
the way through. Previous uses (for 32-bit arithmetic) are accommodated via
SUBREG_TO_REG instructions which make the types and classes agree properly.
llvm-svn: 183693
The issue was that the MatchingInlineAsm and VariantID args to the
MatchInstructionImpl function weren't being set properly. Specifically, when
parsing intel syntax, the parser thought it was parsing inline assembly in the
at&t dialect; that will never be the case.
The crash was caused when the emitter tried to emit the instruction, but the
operands weren't set. When parsing inline assembly we only set the opcode, not
the operands, which is used to lookup the instruction descriptor.
rdar://13854391 and PR15945
Also, this commit reverts r176036. Now that we're correctly parsing the intel
syntax the pushad/popad don't match properly. I've reimplemented that fix using
a MnemonicAlias.
llvm-svn: 181620
variant/dialect. Addresses a FIXME in the emitMnemonicAliases function.
Use and test case to come shortly.
rdar://13688439 and part of PR13340.
llvm-svn: 179804
To enable a load of a call address to be folded with that call, this
load is moved from outside of callseq into callseq. Such a moving
adds a non-glued node (that load) into a glued sequence. This non-glue
load is only removed when DAG selection folds them into a memory form
call instruction. When such instruction selection is disabled, it breaks
DAG schedule.
To prevent that, such moving is disabled when target favors register
indirect call.
Previous workaround disabling CALL32m/CALL64m insn selection is removed.
llvm-svn: 178308
1) allows the use of RIP-relative addressing in 32-bit LEA instructions under
x86-64 (ILP32 and LP64)
2) separates the size of address registers in 64-bit LEA instructions from
control by ILP32/LP64.
llvm-svn: 174208
When an instruction as written requires 32-bit mode and we're assembling
in 64-bit mode, or vice-versa, issue a more specific diagnostic about
what's wrong.
rdar://12700702
llvm-svn: 167937
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
llvm-svn: 167573
- Besides used in SjLj exception handling, __builtin_setjmp/__longjmp is also
used as a light-weight replacement of setjmp/longjmp which are used to
implementation continuation, user-level threading, and etc. The support added
in this patch ONLY addresses this usage and is NOT intended to support SjLj
exception handling as zero-cost DWARF exception handling is used by default
in X86.
llvm-svn: 165989
We don't have enough GR64_TC registers when calling a varargs function
with 6 arguments. Since %al holds the number of vector registers used,
only %r11 is available as a scratch register.
This means that addressing modes using both base and index registers
can't be folded into TCRETURNmi64.
<rdar://problem/12282281>
llvm-svn: 163761
- Add 'UseSSEx' to force SSE legacy insn not being selected when AVX is
enabled.
As the penalty of inter-mixing SSE and AVX instructions, we need
prevent SSE legacy insn from being generated except explicitly
specified through some intrinsics. For patterns supported by both
SSE and AVX, so far, we force AVX insn will be tried first relying on
AddedComplexity or position in td file. It's error-prone and
introduces bugs accidentally.
'UseSSEx' is disabled when AVX is turned on. For SSE insns inherited
by AVX, we need this predicate to force VEX encoding or SSE legacy
encoding only.
For insns not inherited by AVX, we still use the previous predicates,
i.e. 'HasSSEx'. So far, these insns fall into the following
categories:
* SSE insns with MMX operands
* SSE insns with GPR/MEM operands only (xFENCE, PREFETCH, CLFLUSH,
CRC, and etc.)
* SSE4A insns.
* MMX insns.
* x87 insns added by SSE.
2 test cases are modified:
- test/CodeGen/X86/fast-isel-x86-64.ll
AVX code generation is different from SSE one. 'vcvtsi2sdq' cannot be
selected by fast-isel due to complicated pattern and fast-isel
fallback to materialize it from constant pool.
- test/CodeGen/X86/widen_load-1.ll
AVX code generation is different from SSE one after fixing SSE/AVX
inter-mixing. Exec-domain fixing prefers 'vmovapd' instead of
'vmovaps'.
llvm-svn: 162919