This new disassembler can correctly decode all the testcases that the old one did, though
some "expected failure" testcases are XFAIL'd for now because it is not (yet) as strict in
operand checking as the old one was.
llvm-svn: 137144
Memory operand parsing is a bit haphazzard at the moment, in no small part
due to the even more haphazzard representations of memory operands in the .td
files. Start cleaning that all up, at least a bit.
The addressing modes in the .td files will be being simplified to not be
so monolithic, especially with regards to immediate vs. register offsets
and post-indexed addressing. addrmode3 is on its way with this patch, for
example.
This patch is foundational to enable going back to smaller incremental patches
for the individual memory referencing instructions themselves. It does just
enough to get the basics in place and handle the "make check" regression tests
we already have.
Follow-up work will be fleshing out the details and adding more robust test
cases for the individual instructions, starting with ARM mode and moving from
there into Thumb and Thumb2.
llvm-svn: 136845
Fix the instruction encoding for operands. Refactor mode to use explicit
instruction definitions per FIXME to be more consistent with loads/stores.
Fix disassembler accordingly. Add tests.
llvm-svn: 136509
Fill in the missing fixed bits and the register operand bits of the instruction
encoding. Refactor the definition to make the mode explicit, which is
consistent with how loads and stores are normally represented and makes
parsing much easier. Add parsing aliases for pseudo-instruction variants.
Update the disassembler for the new representations. Add tests for parsing and
encoding.
llvm-svn: 136479
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
Encode the width operand as it encodes in the instruction, which simplifies
the disassembler and the encoder, by using the imm1_32 operand def. Add a
diagnostic for the context-sensitive constraint that the width must be in
the range [1,32-lsb].
llvm-svn: 136264
Start of cleaning this up a bit. First step is to remove the encoder hook by
storing the operand as the bits it'll actually encode to so it can just be
directly used. Map it to the assembly source values 8/16/24 when we print it.
llvm-svn: 136152
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
Fix the Rn register encoding for both SSAT and USAT. Update the parsing of the
shift operand to correctly handle the allowed shift types and immediate ranges
and issue meaningful diagnostics when an illegal value or shift type is
specified. Add aliases to parse an ommitted shift operand (default value of
'lsl #0').
Add tests for diagnostics and proper encoding.
llvm-svn: 135990
The immediate is in the range 1-32, but is encoded as 0-31 in a 5-bit bitfield.
Update the representation such that we store the operand as 0-31, allowing us
to remove the encoder method and the special case handling in the disassembler.
Update the assembly parser and the instruction printer accordingly.
llvm-svn: 135823
Move the shift operator and special value (32 encoded as 0 for PKHTB) handling
into the instruction printer. This cleans up a bit of the disassembler
special casing for these instructions, more easily handles not printing the
operand at all for "lsl #0" and prepares for correct asm parsing of these
operands.
llvm-svn: 135626
The shift type is implied by the instruction (PKHBT vs. PKHTB) and so shouldn't
be also encoded as part of the shift value immediate. Otherwise we're able to
represent invalid instructions, plus it needlessly complicates the
representation. Preparatory work for asm parsing of these instructions.
llvm-svn: 135616
Original Log: Get rid of the separate opcodes for the Darwin versions of tBL, tBLXi, and tBLXr, using pseudo-instructions to lower to the single final opcode. Update the ARM disassembler for this change.
llvm-svn: 135414
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
target register, matching BX. I filed this bug because I was confused at first:
PR10007 - ARM branch instructions have inconsistent predicate operand placement
<http://llvm.org/bugs/show_bug.cgi?id=10007>
llvm-svn: 132041
disassembler API. Hooked this up to the ARM target so such tools as Darwin's
otool(1) can now print things like branch targets for example this:
blx _puts
instead of this:
blx #-36
And even print the expression encoded in the Mach-O relocation entried for
things like this:
movt r0, :upper16:((_foo-_bar)+1234)
llvm-svn: 129284
Since these "Advanced SIMD and VFP" instructions have more specfic encoding bits
specified, if coproc == 10 or 11, we should reject the insn as invalid.
rdar://problem/9239922
rdar://problem/9239596
llvm-svn: 129027
Add more complete sanity check for LdStFrm instructions where if IBit (Inst{25})
is 1, Inst{4} should be 0. Otherwise, we should reject the insn as invalid.
rdar://problem/9239347
rdar://problem/9239467
llvm-svn: 128977
Qd -> bit[12] == 0
Qn -> bit[16] == 0
Qm -> bit[0] == 0
If one of these bits is 1, the instruction is UNDEFINED.
rdar://problem/9238399
rdar://problem/9238445
llvm-svn: 128949
For register-controlled shifts, we should check that the encoding constraint
Inst{7} = 0 and Inst{4} = 1 is satisfied.
rdar://problem/9237693
llvm-svn: 128941
rdar://problem/9229922 ARM disassembler discrepancy: erroneously accepting RFE
Also LDC/STC instructions are predicated while LDC2/STC2 instructions are not, fixed while
doing regression testings.
llvm-svn: 128859
also fix the encoding of the later.
- Add a new encoding bit to describe the index mode used in AM3.
- Teach printAddrMode3Operand to check by the addressing mode which
index mode to print.
- Testcases.
llvm-svn: 128832
all LDR/STR changes and left them to a future patch. Passing all
checks now.
- Implement asm parsing support for LDRT, LDRBT, STRT, STRBT and
fix the encoding wherever is possible.
- Add a new encoding bit to describe the index mode used and teach
printAddrMode2Operand to check by the addressing mode which index
mode to print.
- Testcases
llvm-svn: 128689
- Implement asm parsing support for LDRT, LDRBT, STRT, STRBT and
{STR,LDC}{2}_{PRE,POST} fixing the encoding wherever is possible.
- Move all instructions which use am2offset without a pattern to use
addrmode2.
- Add a new encoding bit to describe the index mode used and teach
printAddrMode2Operand to check by the addressing mode which index
mode to print.
- Testcases
llvm-svn: 128632
These instructions were changed to not embed the addressing mode within the MC instructions
We also need to update the corresponding assert stmt. Also add a test case.
llvm-svn: 128240
These instructions were changed to not embed the addressing mode within the MC instructions
We also need to update the corresponding assert stmt. Also add two test cases.
llvm-svn: 128191
were incomplete. The assert stmt needs to be updated and the operand index incrment is wrong.
Fix the bad logic and add some sanity checking to detect bad instruction encoding;
and add a test case.
llvm-svn: 128186
VFP Load/Store Multiple Instructions used to embed the IA/DB addressing mode within the
MC instruction; that has been changed so that now, for example, VSTMDDB_UPD and VSTMDIA_UPD
are two instructions. Update the ARMDisassemblerCore.cpp's DisassembleVFPLdStMulFrm()
to reflect the change.
Also add a test case.
llvm-svn: 128103
The relevant instruction table entries were changed sometime ago to no longer take
<Rt2> as an operand. Modify ARMDisassemblerCore.cpp to accomodate the change and
add a test case.
llvm-svn: 127935
o A8.6.195 STR (register) -- Encoding T1
o A8.6.193 STR (immediate, Thumb) -- Encoding T1
It has been changed so that now they use different addressing modes
and thus different MC representation (Operand Infos). Modify the
disassembler to reflect the change, and add relevant tests.
llvm-svn: 127833
1. The ARM Darwin *r9 call instructions were pseudo-ized recently.
Modify the ARMDisassemblerCore.cpp file to accomodate the change.
2. The disassembler was unnecessarily adding 8 to the sign-extended imm24:
imm32 = SignExtend(imm24:'00', 32); // A8.6.23 BL, BLX (immediate)
// Encoding A1
It has no business doing such. Removed the offending logic.
Add test cases to arm-tests.txt.
llvm-svn: 127707
The insufficient encoding information of the combined instruction confuses the decoder wrt
UQADD16. Add extra logic to recover from that.
Fixed an assert reported by Sean Callanan
llvm-svn: 127354
- Add custom operand matching for imod and iflags.
- Rename SplitMnemonicAndCC to SplitMnemonic since it splits more than CC
from mnemonic.
- While adding ".w" as an operand, don't change "Head" to avoid passing the
wrong mnemonic to ParseOperand.
- Add asm parser tests.
- Add disassembler tests just to make sure it can catch all cps versions.
llvm-svn: 125489
Thumb2 encoding to share code with the ARM encoding, which gets use fixup support for free.
It also allows us to fold away at least one codegen-only pattern.
llvm-svn: 120481
'db', 'ib', 'da') instead of having that mode as a separate field in the
instruction. It's more convenient for the asm parser and much more readable for
humans.
<rdar://problem/8654088>
llvm-svn: 119310
"The register specified for a dregpair is the corresponding Q register, so to
get the pair, we need to look up the sub-regs based on the qreg. Create a
lookup function since we don't have access to TargetRegisterInfo here to
be able to use getSubReg(ARM::dsub_[01])."
Additionaly, fix the NEON VLD1* and VST1* instruction patterns not to use
the dregpair modifier for the 2xdreg versions. Explicitly specifying the two
registers as operands is more correct and more consistent with the other
instruction patterns. This enables further cleanup of special case code in the
disassembler as a nice side-effect.
llvm-svn: 113903
all the other LDM/STM instructions. This fixes asm printer crashes when
compiling with -O0. I've changed one of the NEON tests (vst3.ll) to run
with -O0 to check this in the future.
Prior to this change VLDM/VSTM used addressing mode #5, but not really.
The offset field was used to hold a count of the number of registers being
loaded or stored, and the AM5 opcode field was expanded to specify the IA
or DB mode, instead of the standard ADD/SUB specifier. Much of the backend
was not aware of these special cases. The crashes occured when rewriting
a frameindex caused the AM5 offset field to be changed so that it did not
have a valid submode. I don't know exactly what changed to expose this now.
Maybe we've never done much with -O0 and NEON. Regardless, there's no longer
any reason to keep a count of the VLDM/VSTM registers, so we can use
addressing mode #4 and clean things up in a lot of places.
llvm-svn: 112322
entry for ARM STRBT is actually a super-instruction for A8.6.199 STRBT A1 & A2.
Recover by looking for ARM:USAT encoding pattern before delegating to the auto-
gened decoder.
Added a "usat" test case to arm-tests.txt.
llvm-svn: 110894
memory and synchronization barrier dmb and dsb instructions.
- Change instruction names to something more sensible (matching name of actual
instructions).
- Added tests for memory barrier codegen.
llvm-svn: 110785
(I discovered 2 more copies of the ARM instruction format list, bringing the
total to 4!! Two of them were already out of sync. I haven't yet gotten into
the disassembler enough to know the best way to fix this, but something needs
to be done.) Add support for encoding these instructions.
llvm-svn: 110754
reference registers past the end of the NEON register file, and report them
as invalid instead of asserting when trying to print them. PR7746.
llvm-svn: 109933
have 4 bits per register in the operand encoding), but have undefined
behavior when the operand value is 13 or 15 (SP and PC, respectively).
The trivial coalescer in linear scan sometimes will merge a copy from
SP into a subsequent instruction which uses the copy, and if that
instruction cannot legally reference SP, we get bad code such as:
mls r0,r9,r0,sp
instead of:
mov r2, sp
mls r0, r9, r0, r2
This patch adds a new register class for use by Thumb2 that excludes
the problematic registers (SP and PC) and is used instead of GPR
for those operands which cannot legally reference PC or SP. The
trivial coalescer explicitly requires that the register class
of the destination for the COPY instruction contain the source
register for the COPY to be considered for coalescing. This prevents
errant instructions like that above.
PR7499
llvm-svn: 109842
the machine instruction representation of the immediate value to be encoded
into an integer with similar fields as the actual VMOV instruction. This makes
things easier for the disassembler, since it can just stuff the bits into the
immediate operand, but harder for the asm printer since it has to decode the
value to be printed. Testcase for the encoding will follow later when MC has
more support for ARM.
llvm-svn: 105836
In file included from X86InstrInfo.cpp:16:
X86GenInstrInfo.inc:2789: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2790: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2792: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2793: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2808: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2809: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2816: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2817: error: integer constant is too large for 'long' type
llvm-svn: 105524
before reglist were not properly handled with respect to IT Block. Fix that by
creating a new method ARMBasicMCBuilder::DoPredicateOperands() used by those
instructions for disassembly. Add a test case.
llvm-svn: 101974
Pseudocode details of conditional, Condition bits '111x' indicate the
instruction is always executed. That is, '1111' is a leagl condition field
value, which is now mapped to ARMCC::AL.
Also add a test case for condition field '1111'.
llvm-svn: 101817
case. Also, the 0xFF hex literal involved in the shift for ESize64 should be
suffixed "ul" to preserve the shift result.
Implemented printHex*ImmOperand() by copying from ARMAsmPrinter.cpp and added a
test case for DisassembleN1RegModImmFrm()/printHex64ImmOperand().
llvm-svn: 101557
function checks whether we have a valid submode for VLDM/VSTM (must be either
"ia" or "db") before calling ARM_AM::getAM5Opc(AMSubMode, unsigned char).
llvm-svn: 101306
was asserting because the (RegClass, RegNum) combination doesn't make sense from
an encoding point of view.
Since getRegisterEnum() is used all over the place, to change the code to check
for encoding error after each call would not only bloat the code, but also make
it less readable. An Err flag is added to the ARMBasicMCBuilder where a client
can set a non-zero value to indicate some kind of error condition while building
up the MCInst. ARMBasicMCBuilder::BuildIt() checks this flag and returns false
if a non-zero value is detected.
llvm-svn: 101290
involing getBFCInvMask() where lsb <= msb does not hold true, the disassembler
just returns false, instead of assert, to indicate disassembly error.
llvm-svn: 101205
instruction encoding is encountered, we just return a NULL ARMBasicMCBuilder
instance and the client just returns false to indicate disassembly error.
llvm-svn: 101201
code. It used to #include the enhanced disassembly
information for the targets it supported straight
out of lib/Target/{X86,ARM,...} but now it uses a
new interface provided by MCDisassembler, and (so
far) implemented by X86 and ARM.
Also removed hacky #define-controlled initialization
of targets in edis. If clients only want edis to
initialize a limited set of targets, they can set
--enable-targets on the configure command line.
llvm-svn: 101179
uint32_t insn;
MemoryObject.readBytes(Address, 4, (uint8_t*)&insn, NULL)
to read 4 bytes of memory contents into a 32-bit uint variable. This leaves the
interpretation of byte order up to the host machine and causes PPC test cases of
arm-tests, neon-tests, and thumb-tests to fail. Fixed to use a byte array for
reading the memory contents and shift the bytes into place for the 32-bit uint
variable in the ARM case and 16-bit halfword in the Thumb case.
llvm-svn: 100403
backend (ARMDecoderEmitter) which emits the decoder functions for ARM and Thumb,
and the disassembler core which invokes the decoder function and builds up the
MCInst based on the decoded Opcode.
Reviewed by Chris Latter and Bob Wilson.
llvm-svn: 100233
U test/CodeGen/ARM/tls2.ll
U test/CodeGen/ARM/arm-negative-stride.ll
U test/CodeGen/ARM/2009-10-30.ll
U test/CodeGen/ARM/globals.ll
U test/CodeGen/ARM/str_pre-2.ll
U test/CodeGen/ARM/ldrd.ll
U test/CodeGen/ARM/2009-10-27-double-align.ll
U test/CodeGen/Thumb2/thumb2-strb.ll
U test/CodeGen/Thumb2/ldr-str-imm12.ll
U test/CodeGen/Thumb2/thumb2-strh.ll
U test/CodeGen/Thumb2/thumb2-ldr.ll
U test/CodeGen/Thumb2/thumb2-str_pre.ll
U test/CodeGen/Thumb2/thumb2-str.ll
U test/CodeGen/Thumb2/thumb2-ldrh.ll
U utils/TableGen/TableGen.cpp
U utils/TableGen/DisassemblerEmitter.cpp
D utils/TableGen/RISCDisassemblerEmitter.h
D utils/TableGen/RISCDisassemblerEmitter.cpp
U Makefile.rules
U lib/Target/ARM/ARMInstrNEON.td
U lib/Target/ARM/Makefile
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
D lib/Target/ARM/Disassembler
U lib/Target/ARM/ARMInstrFormats.td
U lib/Target/ARM/ARMAddressingModes.h
U lib/Target/ARM/Thumb2ITBlockPass.cpp
llvm-svn: 98640
(RISCDisassemblerEmitter) which emits the decoder functions for ARM and Thumb,
and the disassembler core which invokes the decoder function and builds up the
MCInst based on the decoded Opcode.
Added sub-formats to the NeonI/NeonXI instructions to further refine the NEONFrm
instructions to help disassembly.
We also changed the output of the addressing modes to omit the '+' from the
assembler syntax #+/-<imm> or +/-<Rm>. See, for example, A8.6.57/58/60.
And modified test cases to not expect '+' in +reg or #+num. For example,
; CHECK: ldr.w r9, [r7, #28]
llvm-svn: 98637