the sets of available conversions for the first and second arguments
separate. This is apparently the indent of C++ [over.built], and
reduces the number of overload candidates generated, eliminating some
ambiguities. Fixes PR8477.
llvm-svn: 118178
why the candidate is non-viable. There's a lot we can do to improve this, but
it's a good start. Further improvements should probably be integrated with the
bad-initialization reporting routines.
llvm-svn: 93277
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
overload candidates (but not the built-in ones). We still rely on the
underlying built-in semantic analysis to produce the initial
diagnostic, then print the candidates following that diagnostic.
One side advantage of this approach is that we can perform more validation
of C++'s operator overloading with built-in candidates vs. the
semantic analysis for those built-in operators: when there are no
viable candidates, we know to expect an error from the built-in
operator handling code. Otherwise, we are not modeling the built-in
semantics properly within operator overloading. This is checked as:
assert(Result.isInvalid() &&
"C++ binary operator overloading is missing
candidates!");
if (Result.isInvalid())
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
The assert() catches cases where we're wrong in a +Asserts build. The
"if" makes sure that, if this happens in a production clang
(-Asserts), we still build the proper built-in operator and continue
on our merry way. This is effectively what happened before this
change, but we've added the assert() to catch more flies.
llvm-svn: 83175
pointers, by extending the "composite pointer type" logic to include
member pointer types.
Introduce test cases for member pointer comparisons, including those
that involve the builtin operator candidates implemented earlier.
llvm-svn: 79925
built-in operator candidates. Test overloading of '&' and ','.
In C++, a comma expression is an lvalue if its right-hand
subexpression is an lvalue. Update Expr::isLvalue accordingly.
llvm-svn: 59643
post-decrement, including support for generating all of the built-in
operator candidates for these operators.
C++ and C have different rules for the arguments to the builtin unary
'+' and '-'. Implemented both variants in Sema::ActOnUnaryOp.
In C++, pre-increment and pre-decrement return lvalues. Update
Expr::isLvalue accordingly.
llvm-svn: 59638
not "int".
Fix a typo in the promotion of enumeration types that was causing some
integral promotions to look like integral conversions (leading to
extra ambiguities in overload resolution).
Check for "acceptable" overloaded operators based on the types of the
arguments. This is a somewhat odd check that is specified by the
standard, but I can't see why it actually matters: the overload
candidates it suppresses don't seem like they would ever be picked as
the best candidates.
llvm-svn: 59583
functions for built-in operators, e.g., the builtin
bool operator==(int const*, int const*)
can be used for the expression "x1 == x2" given:
struct X {
operator int const*();
} x1, x2;
The scheme for handling these built-in operators is relatively simple:
for each candidate required by the standard, create a special kind of
candidate function for the built-in. If overload resolution picks the
built-in operator, we perform the appropriate conversions on the
arguments and then let the normal built-in operator take care of it.
There may be some optimization opportunity left: if we can reduce the
number of built-in operator overloads we generate, overload resolution
for these cases will go faster. However, one must be careful when
doing this: GCC generates too few operator overloads in our little
test program, and fails to compile it because none of the overloads it
generates match.
Note that we only support operator overload for non-member binary
operators at the moment. The other operators will follow.
As part of this change, ImplicitCastExpr can now be an lvalue.
llvm-svn: 59148