This is similar to what we did earlier for fields of the Section class.
When a field is optional we can use the =<none> syntax in macros.
This was splitted from D92478.
Differential revision: https://reviews.llvm.org/D92565
Test runs log some of their output to files inside the LLDB session dir. This
session dir is shared between all tests, so all the tests have to make sure they
choose a unique file name inside that directory. We currently choose by default
`<test-class-name>-<test-method-name>` as the log file name. However, that means
that if not every test class in the test suite has a unique class name, then we
end up with a race condition as two tests will try to write to the same log
file.
I already tried in D83767 changing the format to use the test file basename
instead (which we already require to be unique for some other functionality),
but it seems the code for getting the basename didn't work on Windows.
This patch instead just changes that dotest stores the log files in the build
directory for the current test. We know that directory is unique for this test,
so no need to generate some unique file name now. Also removes all the
environment vars and parameters related to the now unused session dir.
The new log paths now look like this for a failure in 'TestCppOperators`:
```
./lldb-test-build.noindex/lang/cpp/operators/TestCppOperators.test_dwarf/Failure.log
./lldb-test-build.noindex/lang/cpp/operators/TestCppOperators.test_dsym/Failure.log
./lldb-test-build.noindex/lang/cpp/operators/TestCppOperators.test_gmodules/Failure.log
```
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D92498
This implements the std::filesystem parts of P0482 (which is already
marked as in progress), and applies the actions that are suggested
in P1423.
Differential Revision: https://reviews.llvm.org/D90222
Currently we have to duplicate the same checks in isPotentiallyReassociatable and tryReassociate. With simple pattern like add/mul this may be not a big deal. But the situation gets much worse when I try to add support for min/max. Min/Max may be represented by several instructions and can take different forms. In order reduce complexity for upcoming min/max support we need to restructure the code a bit to avoid mentioned code duplication.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88286
Currently we delete optimized instructions as we go. That has several negative consequences. First it complicates traversal logic itself. Second if newly generated instruction has been deleted the traversal is repeated from scratch.
But real motivation for the change is upcoming change with support for min/max reassociation. Here we employ SCEV expander to generate code. As a result newly generated instructions may be inserted not right before original instruction (because SCEV may do hoisting) and there is no way to know 'next' instruction.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88285
We keep referring to the single object created by this class as
'scratch AST/Context/TypeSystem' so at this point we might as well rename the
class. It's also not involved at all in expression evaluation, so the
'ForExpressions' prefix is a bit misleading.
This patch teaches the jump threading pass to call BPI->eraseBlock
when it folds a conditional branch.
Without this patch, BranchProbabilityInfo could end up with stale edge
probabilities for the basic block containing the conditional branch --
one edge probability with less than 1.0 and the other for a removed
edge.
Differential Revision: https://reviews.llvm.org/D92608
In the past, the reshape op can be folded only if the indexing map is
permutation in consumer's usage. We can relax to condition to be projected
permutation.
This patch still limits the fusion for scalar cases. Scalar case is a corner
case, because we need to decide where to put extra dims.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D92466
This reverts commit 4bd35cdc3a.
The patch was reverted during the investigation. The investigation
shown that the patch did not cause any trouble, but just exposed
the existing problem that is addressed by the previous patch
"[IndVars] Quick fix LHS/RHS bug". Returning without changes.
The code relies on fact that LHS is the NarrowDef but never
really checks it. Adding the conservative restrictive check,
will follow-up with handling of case where RHS is a NarrowDef.
This is a child diff of D92261.
It extended TLS arg/ret to work with aggregate types.
For a function
t foo(t1 a1, t2 a2, ... tn an)
Its arguments shadow are saved in TLS args like
a1_s, a2_s, ..., an_s
TLS ret simply includes r_s. By calculating the type size of each shadow
value, we can get their offset.
This is similar to what MSan does. See __msan_retval_tls and __msan_param_tls
from llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp.
Note that this change does not add test cases for overflowed TLS
arg/ret because this is hard to test w/o supporting aggregate shdow
types. We will be adding them after supporting that.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D92440
This helps us catch cases where we add support for a flag but forget to
remove HelpHidden from Options.td.
More explicit alternative to D92455
Differential Revision: https://reviews.llvm.org/D92575
Don't early return from layoutMemory in PIC mode before we have set the
memory limits.
This matters in particular with shared-memory + PIC because shared
memories require maximum size.
Secondly, when we need a maximum, but the user does not supply one,
default to MAX_INT rather than 0 (defaulting to zero is completely
useless and means that building with -shared didn't previously work at
all without --maximum-memory, because zero is never big enough).
This is part of an ongoing effort to enable dynamic linking with
threads in emscripten.
See https://github.com/emscripten-core/emscripten/issues/3494
Differential Revision: https://reviews.llvm.org/D92528
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
The definitions of ModuleOp and FuncOp are now within BuiltinOps.h, making the individual files obsolete.
Differential Revision: https://reviews.llvm.org/D92622
No register can be allocated for indirect call when it use regcall calling
convention and passed 5/5+ args.
For example:
call vreg (ag1, ag2, ag3, ag4, ag5, ...) --> 5 regs (EAX, ECX, EDX, ESI, EDI)
used for pass args, 1 reg (EBX )used for hold GOT point, so no regs can be
allocated to vreg.
The Intel386 architecture provides 8 general purpose 32-bit registers. RA
mostly use 6 of them (EAX, EBX, ECX, EDX, ESI, EDI). 5 of this regs can be
used to pass function arguments (EAX, ECX, EDX, ESI, EDI).
EBX used to hold the GOT pointer when making function calls via the PLT.
ESP and EBP usually be "reserved" in register allocation.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D91020
This was partially supported but untested for RefCountedBase (the
implicit copy assignment would've been problematic - so delete that) and
unsupported (would not have compiled, because std::atomic is
non-copyable) for ThreadSafeRefCountedBase (implement similar support
to RefCountedBase)
Fix the test that had a copy ctor for the derived object but called
RefCountBase's default ctor from that copy ctor - which meant it wasn't
actually testing RefCountBase's copy semantics.
A separate AVX512 lowering pass does not compose well with the regular
vector lowering pass. As such, it is at risk of code duplication and
lowering inconsistencies. This change removes the separate AVX512 lowering
pass and makes it an "option" in the regular vector lowering pass
(viz. vector dialect "augmented" with AVX512 dialect).
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D92614
This patch adds a capability to SmallVector to decide a number of
inlined elements automatically. The policy is:
- A minimum of 1 inlined elements, with more as long as
sizeof(SmallVector<T>) <= 64.
- If sizeof(T) is "too big", then trigger a static_assert: this dodges
the more pathological cases
This is expected to systematically improve SmallVector use in the
LLVM codebase, which has historically been plagued by semi-arbitrary /
cargo culted N parameters, often leading to bad outcomes due to
excessive sizeof(SmallVector<T, N>). This default also makes
programming more convenient by avoiding edit/rebuild cycles due to
forgetting to type the N parameter.
Differential Revision: https://reviews.llvm.org/D92522
This changes --print-before/after to be a list of strings rather than
legacy passes. (this also has the effect of not showing the entire list
of passes in --help-hidden after --print-before/after, which IMO is
great for making it less verbose).
Currently PrintIRInstrumentation passes the class name rather than pass
name to llvm::shouldPrintBeforePass(), meaning
llvm::shouldPrintBeforePass() never functions as intended in the NPM.
There is no easy way of converting class names to pass names outside of
within an instance of PassBuilder.
This adds a map of pass class names to their short names in
PassRegistry.def within PassInstrumentationCallbacks. It is populated
inside the constructor of PassBuilder, which takes a
PassInstrumentationCallbacks.
Add a pointer to PassInstrumentationCallbacks inside
PrintIRInstrumentation and use the newly created map.
This is a bit hacky, but I can't think of a better way since the short
id to class name only exists within PassRegistry.def. This also doesn't
handle passes not in PassRegistry.def but rather added via
PassBuilder::registerPipelineParsingCallback().
llvm/test/CodeGen/Generic/print-after.ll doesn't seem very useful now
with this change.
Reviewed By: ychen, jamieschmeiser
Differential Revision: https://reviews.llvm.org/D87216
`ASTUnit::Parse` sets up the `FileManager` earlier in the same function,
ensuring `ASTUnit::getFileManager()` matches `Clang->getFileManager()`.
Remove the later call to `setFileManager(getFileManager())` since it
does nothing.
Differential Revision: https://reviews.llvm.org/D90888
template-parameter-list in a lambda.
This implements one of the missing parts of P0857R0. Mark it as not done
on the cxx_status page given that it's still incomplete.
This was important when ModuleOp was the only top level operation, but that isn't necessarily the case anymore. This is one of the last remaining aspects of the infrastructure that is hardcoded to ModuleOp.
Differential Revision: https://reviews.llvm.org/D92605
This was a somewhat important restriction in the past when ModuleOp was distinctly the top-level container operation, as well as before the pass manager had support for running nested pass managers natively. With these two issues fading away, there isn't really a good reason to enforce that a ModuleOp is the thing running within a pass manager. As such, this revision removes the restriction and allows for users to pass in the name of the operation that the pass manager will be scheduled on.
The only remaining dependency on BuiltinOps from Pass after this revision is due to FunctionPass, which will be resolved in a followup revision.
Differential Revision: https://reviews.llvm.org/D92450
There isn't a good reason for anything within IR to specifically reference any of the builtin operations. The only place that had a good reason in the past was AsmPrinter, but the behavior there doesn't need to hardcode ModuleOp anymore.
Differential Revision: https://reviews.llvm.org/D92448
Add support for vectorization for linalg.generic representing element-wise ops.
Those are converted to transfer_read + vector ops + transfer_write.
Also re-organize the vectorization tests to be together.
Implementation derived from the work of @burmako, @agrue and
@fedelebron.
Differential Revision: https://reviews.llvm.org/D92540