Summary:
If we didn't set the value for hasSideEffects bit in our td file, `llvm-tblgen`
will set it as true for those instructions which has no match pattern.
Below 6 instructions don't set the hasSideEffects flag and don't have match
pattern, so their hasSideEffects flag will be set true by llvm-tblgen.
But in fact below instructions don't modify any special register and don't have
other SideEffects, they shouldn't have SideEffects.
This patch is to modify the hasSideEffects of below instructions from 1 to 0.
```
VEXTUHLX
VEXTUHRX
VEXTUWLX
VEXTUWRX
VSPLTBs
VSPLTHs
```
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D71391
The early tail duplicator pass introduces new ones, so a MIR test that
infers no phis since there were none on the input would fail the
verifier after running.
There ended up being two result registers, which would fail on
select. It was really defing a new temp register in the correct def
position, instead of the correct result register.
Summary:
Previously we did this with isel patterns that used garbage in
the widened part of the source. But that's not valid for strictfp.
So now we custom widen and use zeroes for the widened elemens for
strictfp.
This replaces D71864.
Reviewers: RKSimon, spatel, andrew.w.kaylor, pengfei, LiuChen3
Reviewed By: pengfei
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71879
I believe the algorithm we use for non-strict is exception safe
for strict. The fsub won't generate any exceptions. After it we
will have an exact version of the i32 integer in a double. Then
we just round it to f32. That rounding will generate a precision
exception if it can't be represented exactly.
Previously we widened these through isel patterns, but that
didn't work for STRICT_ nodes. Those need to be padded with
zeroes in the upper bits which is harder to do in isel patterns.
Previously we were widening with isel patterns, but that wasn't
exception safe for strict FP. So now we widen to v4i32->v4f64
during type legalization. And then let op legalization further
widen to v8i32->v8f64.
The vec_int_to_fp.ll changes are caused by us no longer narrowing
extracts of strict_uint_to_fp to the v4i32->v2f64 instruction
without AVX512VL only to have isel rewiden it. Now we just keep
it wide throughout. So we don't have an opportunity to narrow
the load.
AVX512F added instruction for vector fp_to_uint conversions. With
AVX512VL we can use a specific instruction that does v2f64->v4i32 with
zeroes in the 2 extra elements. For non-strict nodes without AVX512VL
we relied on type legalization to turn it to v4f64->v4i32 which would
later be widened by op legalization to v8f64->v8i32. But type legalization
doesn't currently widen strict nodes since it doesn't know how to
safely and efficiently pad the extra elements. But for X86 we know
padding with zeroes is safe and efficient so do that ourselves.
Previous btf field relocation is always at assignment like
r1 = 4
which is converted from an ld_imm64 instruction.
This patch did an optimization such that relocation
instruction might be load/store/shift. Specically, the
following insns may also have relocation, except BPF_MOV:
LDB, LDH, LDW, LDD, STB, STH, STW, STD,
LDB32, LDH32, LDW32, STB32, STH32, STW32,
SLL, SRL, SRA
To accomplish this, a few BPF target specific
codegen only instructions are invented. They
are generated at backend BPF SimplifyPatchable phase,
which is at early llc phase when SSA form is available.
The new codegen only instructions will be converted to
real proper instructions at the codegen and BTF emission stage.
Note that, as revealed by a few tests, this optimization might
be actual generating more relocations:
Scenario 1:
if (...) {
... __builtin_preserve_field_info(arg->b2, 0) ...
} else {
... __builtin_preserve_field_info(arg->b2, 0) ...
}
Compiler could do CSE to only have one relocation. But if both
of the above is translated into codegen internal instructions,
the compiler will not be able to do that.
Scenario 2:
offset = ... __builtin_preserve_field_info(arg->b2, 0) ...
...
... offset ...
... offset ...
... offset ...
For whatever reason, the compiler might be temporarily do copy
propagation of the righthand of "offset" assignment like
... __builtin_preserve_field_info(arg->b2, 0) ...
... __builtin_preserve_field_info(arg->b2, 0) ...
and CSE will be able to deduplicate later.
But if these intrinsics are converted to BPF pseudo instructions,
they will not be able to get deduplicated.
I do not expect we have big instruction count difference.
It may actually reduce instruction count since now relocation
is in deeper insn dependency chain.
For example, for test offset-reloc-fieldinfo-2.ll, this patch
generates 7 instead of 6 relocations for non-alu32 mode, but it
actually reduced instruction count from 29 to 26.
Differential Revision: https://reviews.llvm.org/D71790
Summary:
If we didn't set the value for hasSideEffects bit in our td file, `llvm-tblgen`
will set it as true for those instructions which has no match pattern.
The instructions `MTLR` and `MFLR` don't set the hasSideEffects flag and don't
have match pattern, so their hasSideEffects flag will be set true by
`llvm-tblgen`.
But in fact, we can use `[LR]` to model the two instructions, so they should not
have SideEffects.
This patch is to modify the hasSideEffects of MTLR and MFLR from 1 to 0.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D71390
In the worst case, this requires a 128-bit move instruction to
implicitly zero the upper bits. In the common case, we should
recognize the producing instruction already zeroed the upper bits.
Summary:
We're already scanning forward through the basic block. Might as
well just remember eflags defs instead of doing a bounded search
backwards later.
Based on a comment in D71841.
Reviewers: RKSimon, spatel, uweigand
Reviewed By: uweigand
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71865
All of
"no-frame-pointer-elim-non-leaf"
"no-frame-pointer-elim-non-leaf"="true"
"no-frame-pointer-elim-non-leaf"="false"
mean "frame-pointer"="non-leaf", which is quite counter-intuitive.
llvmorg-10-init-16046-ga36ddf0aa9d accidentally broke it.
This fixes the -DLLVM_ENABLE_EXPENSIVE_CHECKS=On test:
```
*** Bad machine code: Non-flag-setting Thumb1 mov is v6-only ***
- function: pass_C
- basic block: %bb.0 entry (0x1fc9bf0)
- instruction: $r0 = tMOVr killed $r6, 14, $noreg
```
On 32-bit targets we can't use the scalar instruction so we
insert the scalar into a vector and use packed conversions.
Previously we used either v4f32->v4i64 or v4f64->v4i64 to avoid
some complexity creating target specific ISD opcodes for
v4f32->v2i64. But this causes extra vzeroupper instructions and
possibly frequency throttling on Intel CPUs.
This patch changes this to create a 128-bit vector and uses a
target specific ISD opcode if needed.
Fix several several additional problems with the int <-> FP conversion
logic both in common code and in the X86 target. In particular:
- The STRICT_FP_TO_UINT expansion emits a floating-point compare. This
compare can raise exceptions and therefore needs to be a strict compare.
I've made it signaling (even though quiet would also be correct) as
signaling is the more usual default for an LT. This code exists both
in common code and in the X86 target.
- The STRICT_UINT_TO_FP expansion algorithm was incorrect for strict mode:
it emitted two STRICT_SINT_TO_FP nodes and then used a select to choose one
of the results. This can cause spurious exceptions by the STRICT_SINT_TO_FP
that ends up not chosen. I've fixed the algorithm to use only a single
STRICT_SINT_TO_FP instead.
- The !isStrictFPEnabled logic in DoInstructionSelection would sometimes do
the wrong thing because it calls getOperationAction using the result VT.
But for some opcodes, incuding [SU]INT_TO_FP, getOperationAction needs to
be called using the operand VT.
- Remove some (obsolete) code in X86DAGToDAGISel::Select that would mutate
STRICT_FP_TO_[SU]INT to non-strict versions unnecessarily.
Reviewed by: craig.topper
Differential Revision: https://reviews.llvm.org/D71840
Summary:
The only useful information the UndefValue conveys is the address space,
which MachinePointerInfo can represent directly without referring to an
IR value.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71838
This moves the X86 specific transform from rL364407
into DAGCombiner to generically handle 'little to big' cases
(for example: extract_subvector(v2i64 bitcast(v16i8))). This
allows us to remove both the x86 implementation and the aarch64
bitcast(extract_subvector(bitcast())) combine.
Earlier patches that dealt with regressions initially exposed
by this patch:
rG5e5e99c041e4
rG0b38af89e2c0
Patch by: @RKSimon (Simon Pilgrim)
Differential Revision: https://reviews.llvm.org/D63815
As the extern_weak target might be missing, resolving to the absolute
address zero, we can't use the normal direct PC-relative branch
instructions (as that would result in relocations out of range).
Improve the classifyGlobalFunctionReference method to set
MO_DLLIMPORT/MO_COFFSTUB, and simplify the existing code in
AArch64TargetLowering::LowerCall to use the return value from
classifyGlobalFunctionReference for these cases.
Add code in both AArch64FastISel and GlobalISel/IRTranslator to
bail out for function calls to extern weak functions on windows,
to let SelectionDAG handle them.
This matches what was done for X86 in 6bf108d77a.
Differential Revision: https://reviews.llvm.org/D71721
As the extern_weak target might be missing, resolving to the absolute
address zero, we can't use the normal direct PC-relative branch
instructions (as that would result in relocations out of range).
Instead check the shouldAssumeDSOLocal method and load the address
from a COFF stub.
This matches what was done for X86 in 6bf108d77a.
Differential Revision: https://reviews.llvm.org/D71720
The custom node PPCISD::XXREVERSE has completely the same semantics of generic node ISD::BSWAP.
We need to clean up it as we have the combine rules for bswap in the base class, while nothing for xxreverse.
Differential Revision: https://reviews.llvm.org/D70657
Summary:
This patch introduces the ROLBRd and RORBRd pseudo-instructions,
which implemenent the "traditional" rotate operations; instead of
the AVR rotate instructions that use the carry bit.
The code is not optimized at all. Especially when dealing with
loops of rotate instructions, this codegen should be improved some
day.
Related bug: 41358 <https://bugs.llvm.org/show_bug.cgi?id=41358>
//Note//: This is my first submitted patch.
Reviewers: dylanmckay, Jim
Reviewed By: dylanmckay
Subscribers: hiraditya, llvm-commits, dylanmckay, dsprenkels
Tags: #llvm
Patched by dsprenkels (Daan Sprenkels)
Differential Revision: https://reviews.llvm.org/D60365
Summary:
Currently, we set legalization action of `ISD::ROTL` vectors as
`Expand` in `PPCISelLowering`. However, we can exploit `vrl(b|h|w|d)`
to lower `ISD::ROTL` directly.
Differential Revision: https://reviews.llvm.org/D71324
Summary:
Without this check unnecessary FMA instructions are generated when the FSUB terms are reused.
This also has the side-effect that the same value is computed to different levels of precision, which can create undesirable effects if the results are used together in subsequent computation.
Reviewers: arsenm, nhaehnle, foad, tpr, dstuttard, spatel
Reviewed By: arsenm
Subscribers: jvesely, wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71656