Sema calls HandleVTable() with a bool parameter which is then threaded through
three layers. The only effect of this bool is an early return at the last
layer.
Instead, remove this parameter and call HandleVTable() only if the bool is
true. No intended behavior change.
llvm-svn: 226096
Turns out there will be left-over deferred inline methods if there have
been errors, because in that case HandleTopLevelDecl bails out early.
llvm-svn: 224649
While we're here, also move the declaration of DeferredInlineMethodDefinitions
closer to the other member vars and make it a SmallVector. NFC.
llvm-svn: 224533
We include unused functions and methods in -fcoverage-mapping so that
we can differentiate between uninstrumented and unused. This can cause
problems for uninstantiated templates though, since they may involve
an incomplete type that can't be mangled. This shows up in things like
libc++'s <unordered_map> and makes coverage unusable.
Avoid the issue by skipping uninstantiated methods of a templated
class.
llvm-svn: 222204
recursively within the emission of another inline function. This ultimately
led to us emitting the same inline function definition twice, which we then
rejected because we believed we had a mangled name conflict.
llvm-svn: 215579
This patch adds the '-fcoverage-mapping' option which
allows clang to generate the coverage mapping information
that can be used to provide code coverage analysis using
the execution counts obtained from the instrumentation
based profiling (-fprofile-instr-generate).
llvm-svn: 214752
This makes us emit dllexported in-class initialized static data members (which
are treated as definitions in MSVC), even when they're not referenced.
It also makes their special linkage reflected in the GVA linkage instead of
getting massaged in CodeGen.
Differential Revision: http://reviews.llvm.org/D4563
llvm-svn: 213304
We would previously fail to emit a definition of bar() for the following code:
struct __declspec(dllexport) S {
void foo() {
t->bar();
}
struct T {
void bar() {}
};
T *t;
};
Note that foo() is an exported method, but bar() is not. However, foo() refers
to bar() so we need to emit its definition. We would previously fail to
realise that bar() is used.
By deferring the method definitions until the end of the top level declaration,
we can simply call EmitTopLevelDecl on them and rely on the usual mechanisms
to decide whether the method should be emitted or not.
Differential Revision: http://reviews.llvm.org/D4038
llvm-svn: 210356
Add driver and frontend support for the GCC -Wframe-larger-than=bytes warning.
This is the first GCC-compatible backend diagnostic built around LLVM's
reporting feature.
This commit adds infrastructure to perform reverse lookup from mangled names
emitted after LLVM IR generation. We use that to resolve precise locations and
originating AST functions, lambdas or block declarations to produce seamless
codegen-guided diagnostics.
An associated change, StringMap now maintains unique mangled name strings
instead of allocating copies. This is a net memory saving in C++ and a small
hit for C where we no longer reuse IdentifierInfo storage, pending further
optimisation.
llvm-svn: 210293
The previous code that was supposed to handle this didn't work
since parsing of inline method definitions is delayed to the end
of the outer class definition. Thus, when HandleTagDeclDefinition()
got called for the inner class, the inline functions in that class
had not been parsed yet.
Richard suggested that the way to do this is by handling inline
method definitions through a new ASTConsumer callback.
I really wanted to call ASTContext::DeclMustBeEmitted() instead of
checking for attributes, but doing that causes us to compute linkage,
and then we fail with "error: unsupported: typedef changes linkage
of anonymous type, but linkage was already computed" on tests like
this: (from SemaCXX/undefined-internal.cpp) :-/
namespace test7 {
typedef struct {
void bar();
void foo() { bar(); }
} A;
}
Differential Revision: http://reviews.llvm.org/D3809
llvm-svn: 209549
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
Refactor the underlying code a bit to remove unnecessary calls to
"hasErrorOccurred" & make them consistently at all the entry points to
the IRGen ASTConsumer.
llvm-svn: 188707
Rather than going through the whole getOrCreateType machinery to
manifest a type, cut straight to the implementation because we know we
have to do work.
While the previous implementation was sufficient for the two cases
(completeness and required completeness) we have already (the general
machinery could inspect the type for those attributes & go down the full
definition path), a pending change (to emit info for types when we emit
their vtables) won't have that luxury & we'll need to force the creation
rather than relying on the general purpose routine.
llvm-svn: 188486
These flags set some preprocessor macros and injects a dependency
on the runtime library into the object file, which later is picked up
by the linker.
This also adds a new CC1 flag for adding a dependent library.
Differential Revision: http://llvm-reviews.chandlerc.com/D1315
llvm-svn: 187945
This simplifies the core benefit of -flimit-debug-info by taking a more
systematic approach to avoid emitting debug info definitions for types
that only require declarations. The previous ad-hoc approach (3 cases
removed in this patch) had many holes.
The general approach (adding a bit to TagDecl and callback through
ASTConsumer) has been discussed with Richard Smith - though always open
to revision.
llvm-svn: 186262
Summary:
Most of this change is wiring the pragma all the way through from the
lexer, parser, and sema to codegen. I considered adding a Decl AST node
for this, but it seemed too heavyweight.
Mach-O already uses a metadata flag called "Linker Options" to do this
kind of auto-linking. This change follows that pattern.
LLVM knows how to forward the "Linker Options" metadata into the COFF
.drectve section where these flags belong. ELF support is not
implemented, but possible.
This is related to auto-linking, which is http://llvm.org/PR13016.
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D723
llvm-svn: 181426
The code generation stuff is going to set attributes on the functions it
generates. To do that it needs the target options. Pass them through.
llvm-svn: 175141
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
In the included testcase, soma thinks that we already have a definition after we
see the out of line decl. Codegen puts it in a deferred list, to be output if
a use is seen. This would break when we saw an explicit template instantiation
definition, since codegen would not be notified.
This patch adds a method to the consumer interface so that soma can notify
codegen that this decl is now required.
llvm-svn: 152024
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718