Summary:
This fixes most of the scheduling info for SKX vector operations.
I had to split a lot of the YMM/ZMM classes into separate classes for YMM and ZMM.
The before/after llvm-exegesis analysis are in the phabricator diff.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47721
llvm-svn: 334407
This is a fix for the problem arising in D47374 (PR37678):
https://bugs.llvm.org/show_bug.cgi?id=37678
We may not have throughput info because it's not specified in the model
or it's not available with variant scheduling, so assume that those
instructions can execute/complete at max-issue-width.
Differential Revision: https://reviews.llvm.org/D47723
llvm-svn: 334055
Split off pinsr/pextr and extractps instructions.
(Mostly) fixes PR36887.
Note: It might be worth adding a WriteFInsertLd class as well in the future.
Differential Revision: https://reviews.llvm.org/D45929
llvm-svn: 330714
While it appears to be correct information based on Intel's optimization manual and Agner's data, it causes perf regressions on a couple of the benchmarks in our internal list.
llvm-svn: 329593
Summary:
This removes the InstRWs for BLENDVPS/PD in favor of WriteFVarBlend. The latency listed was 3 cycles but WriteFVarBlend is defined as 1 cycle latency. The 1 cycle latency matches Agner Fog's data.
The patterns were missing the VEX forms which is why there are no test changes. We don't test "-mcpu=znver1 -mattr=-avx"
Reviewers: RKSimon, GGanesh
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44841
llvm-svn: 329538
As mentioned on D44647, this patch increases the default memory latency to +5cy , which more closely matches what most custom cases are doing for reg-mem instructions.
I've bumped LoadLatency, ReadAfterLd and WriteLoad values to 5cy to be consistent.
As Sandy Bridge is currently our default generic model, this affects a lot of scheduling tests...
Differential Revision: https://reviews.llvm.org/D44654
llvm-svn: 329388
Summary:
It seems many CPUs don't implement this instruction as well as the other vector multiplies. Often using a multi uop flow. Silvermont in particular has a 7 uop flow with 11 cycle throughput. Sandy Bridge implements it as a single uop with 5 cycle latency and 1 cycle throughput. But Haswell and later use 2 uops with 10 cycle latency and 2 cycle throughput.
This patch adds a new X86SchedWritePair we can use to tag this instruction separately. I've provided correct information for Silvermont, Btver2, and Sandy Bridge. I've removed the InstRWs for SandyBridge. I've left Haswell/Broadwell/Skylake InstRWs in place because I wasn't sure how to account for the different load latency between 128 and 256 bits. I also left Znver1 InstRWs in place because the existing values don't match Agner's spreadsheet.
I also left a FIXME in the SandyBridge model because it being used for the "generic" model is too optimistic for the 256/512-bit versions since those are multiple uops on all known CPUs.
Reviewers: RKSimon, GGanesh, courbet
Reviewed By: RKSimon
Subscribers: gchatelet, gbedwell, andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D44972
llvm-svn: 328914
Also restrict to port 0 and 1 for SkylakeClient. It looks like the scheduler models don't account for client not having a full vector ALU on port 5 like server.
Fixes PR36808.
llvm-svn: 328061
As discussed on D44428 and PR36726, this patch splits off WriteFMove/WriteVecMove, WriteFLoad/WriteVecLoad and WriteFStore/WriteVecStore scheduler classes to permit vectors to be handled separately from gpr/scalar types.
I've minimised the diff here by only moving various basic SSE/AVX vector instructions across - we can fix the rest when called for. This does fix the MOVDQA vs MOVAPS/MOVAPD discrepancies mentioned on D44428.
Differential Revision: https://reviews.llvm.org/D44471
llvm-svn: 327630
Normally target independent DAG combine would do this combine based on getSetCCResultType, but with VLX getSetCCResultType returns a vXi1 type preventing the DAG combining from kicking in.
But doing this combine can allow us to remove the explicit sign extend that would otherwise be emitted.
This patch adds a target specific DAG combine to combine the sext+setcc when the result type is the same size as the input to the setcc. I've restricted this to FP compares and things that can be represented with PCMPEQ and PCMPGT since we don't have full integer compare support on the older ISAs.
Differential Revision: https://reviews.llvm.org/D41850
llvm-svn: 322101
This reverts commit r320508, in effect re-applying r320308. Simon has already
reverted the parts that caused the crash that motivated the revert in r320492.
llvm-svn: 320512
Updated the scheduling information for the Haswell subtarget with the following changes:
Regrouped the instructions after adding appropriate load + store latencies.
Added scheduling for missing instructions such as the GATHER instrs.
The changes were made after revisiting the latencies impact of all memory uOps.
Reviewers: RKSimon, zvi, craig.topper, apilipenko
Differential Revision: https://reviews.llvm.org/D40021
Change-Id: Iaf6c1f5169add1552845a8a566af4e5a359217a7
llvm-svn: 320137
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
The VRNDSCALE instructions implement a superset of the (V)ROUND instructions. They are equivalent if the upper 4-bits of the immediate are 0.
This patch lowers the legacy intrinsics to the VRNDSCALE ISD node and masks the upper bits of the immediate to 0. This allows us to take advantage of the larger register encoding space.
We should maybe consider converting VRNDSCALE back to VROUND in the EVEX to VEX pass if the extended registers are not being used.
I notice some load folding opportunities being missed for the VRNDSCALESS/SD instructions that I'll try to fix in future patches.
llvm-svn: 318008
Adding the scheduling information for the Browadwell (BDW) CPU target.
This patch adds the instruction scheduling information for the Broadwell (BDW) architecture target by adding the file X86SchedBroadwell.td located under the X86 Target.
We used the scheduling information retrieved from the Broadwell architects in order to create the file.
The scheduling information includes latency, number of micro-Ops and used ports by each BDW instruction.
The patch continues the scheduling replacement and insertion effort started with the SandyBridge (SNB) target in r310792, the Haswell (HSW) target in r311879, the SkylakeClient (SKL) target in rL313613 + rL315978 and the SkylakeServer (SKX) in rL315175.
Performance fluctuations may be expected due to code alignment effects.
Reviewers: zvi, RKSimon, craig.topper
Differential Revision: https://reviews.llvm.org/D39054
Change-Id: If6f799e5ff60e1091c8d43b05ea78c53581bae01
llvm-svn: 316492
NFC.
Added the Broadwell cpu and the BROADWELL prefix to all the scheduling regression tests, as part of prepartion for a larger commit of adding all Broadwell scheduiling.
Reviewers: RKSimon, zvi, aaboud
Differential Revision: https://reviews.llvm.org/D38994
Change-Id: I54bc9065168844c107b1729fcdc1d311ce3ea0a9
llvm-svn: 315998
Updated the scheduling information for the SkylakeClient target with the following changes:
1. regrouped the instructions after adding load and store latencies.
2. regrouped the instructions after adding identified missing ports in several groups.
The changes were made after revisiting the latencies impact of all the load and store uOps.
Reviewers: zvi, RKSimon, craig.topper
Differential Revision: https://reviews.llvm.org/D38727
Change-Id: I778a308cc11e490e8fa5e27e2047412a1dca029f
llvm-svn: 315978
Adding the scheduling information for the SkylakeServer (SKX) target.
This patch adds the instruction scheduling information for the SkylakeServer (SKX) architecture target by adding the file X86SchedSkylakeServer.td located under the X86 Target.
We used the scheduling information retrieved from the Skylake architects in order to create the file.
The scheduling information includes latency, number of micro-Ops and used ports by each SKL instruction.
The patch continues the scheduling replacement and insertion effort started with the SNB target in r310792, the HSW target in r311879 and the SkylakeClient (SKL) target in rL313613.
Please expect some performance fluctuations due to code alignment effects.
Reviewers: zvi, RKSimon, craig.topper, chandlerc, aymanmu
Differential Revision: https://reviews.llvm.org/D38443
Change-Id: I5c228fcc09e9e5a99b6116e62b356c4f9b971185
llvm-svn: 315175
This patch adds the instruction scheduling information for the SkylakeClient (SKL) architecture target by adding the file X86SchedSkylakeClient.td located under the X86 Target.
We used the scheduling information retrieved from the Skylake architects in order to create the file.
The scheduling information includes latency, number of micro-Ops and used ports by each SKL instruction.
The patch continues the scheduling replacement and insertion effort started with the SNB target in r307529 and r310792 and for HSW in r311879.
Please expect some performance fluctuations due to code alignment effects.
Reviewers: craig.topper, zvi, chandlerc, igorb, aymanmus, RKSimon, delena
Differential Revision: https://reviews.llvm.org/D37294
llvm-svn: 313613
Summary:
This patch enables the following:
1) Regex based Instruction itineraries for integer instructions.
2) The instructions are grouped as per the nature of the instructions
(move, arithmetic, logic, Misc, Control Transfer).
3) FP instructions and their itineraries are added which includes values
for SSE4A, BMI, BMI2 and SHA instructions.
Patch by Ganesh Gopalasubramanian
Reviewers: RKSimon, craig.topper
Subscribers: vprasad, shivaram, ddibyend, andreadb, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D36617
llvm-svn: 312237
NFC.
Replaced duplicated HASWELL prefixes in run commands in the X86 Code Gen regression tests by the SKYLAKE prefix when the -mcpu is set to skylake.
The fix is needed in preparation of an upcoming patch containing the Skylake scheduling info.
Reviewers: zvi, RKSimon, aymanmus, igorb
Differential Revision: https://reviews.llvm.org/D37258
llvm-svn: 312103
This patch completely replaces the instruction scheduling information for the Haswell architecture target by modifying the file X86SchedHaswell.td located under the X86 Target.
We used the scheduling information retrieved from the Haswell architects in order to replace and modify the existing scheduling.
The patch continues the scheduling replacement effort started with the SNB target in r307529 and r310792.
Information includes latency, number of micro-Ops and used ports by each HSW instruction.
Please expect some performance fluctuations due to code alignment effects.
Reviewers: RKSimon, zvi, aymanmus, craig.topper, m_zuckerman, igorb, dim, chandlerc, aaboud
Differential Revision: https://reviews.llvm.org/D36663
llvm-svn: 311879
This is a continuation patch for commit r307529 which completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target (see also https://reviews.llvm.org/D35019).
In this patch we added the scheduling information of additional SNB instructions that were missing from the patch commit r307529, fixed the scheduling of several resource groups that include only port0 instead of port05 (i.e., port0 OR port5) and fixed several incorrect instructions' scheduling in the r307529 commit.
The patch also includes the X87 instructions which were missing in previous patch commit r307529 as reported in bugzilla bug 34080.
Reviewers: zvi, RKSimon, chandlerc, igorb, m_zuckerman, craig.topper, aymanmus, dim
Differential Revision: https://reviews.llvm.org/D36388
llvm-svn: 310792
Summary:
This patch adds the following
1. Adds a skeleton scheduler model for AMD Znver1.
2. Introduces the znver1 execution units and pipes.
3. Caters the instructions based on the generic scheduler classes.
4. Further additions to the scheduler model with instruction itineraries will be carried out incrementally based on
a. Instructions types
b. Registers used
5. Since itineraries are not added based on instructions, throughput information are bound to change when incremental changes are added.
6. Scheduler testcases are modified accordingly to suit the new model.
Patch by Ganesh Gopalasubramanian. With minor formatting tweaks from me.
Reviewers: craig.topper, RKSimon
Subscribers: javed.absar, shivaram, ddibyend, vprasad
Differential Revision: https://reviews.llvm.org/D35293
llvm-svn: 308411
The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information.
Please note that the patch extensively affects the X86 MC instr scheduling for SNB.
Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX.
The updated and extended information about each instruction includes the following details:
•static latency of the instruction
•number of uOps from which the instruction consists of
•all ports used by the instruction's' uOPs
For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5:
def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> {
let Latency = 9;
let NumMicroOps = 6;
let ResourceCycles = [1,2,2,1];
}
def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>;
Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script.
Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb
Differential Revision: https://reviews.llvm.org/D35019#inline-304691
llvm-svn: 307529
•static latency
•number of uOps from which the instructions consists
•all ports used by the instruction
Reviewers:
RKSimon
zvi
aymanmus
m_zuckerman
Differential Revision: https://reviews.llvm.org/D33897
llvm-svn: 306414