This re-applies r262886 with a fix for 32 bit platforms that have 8 byte
pointer alignment, effectively reverting r262892.
Original Message:
Currently some SDNode operands are malloc'd, some are stored inline in
subclasses of SDNode, and some are thrown into a BumpPtrAllocator.
This scheme is complex, inconsistent, and makes refactoring SDNodes
fairly difficult.
Instead, we can allocate all of the operands using an ArrayRecycler
that wraps a BumpPtrAllocator. This keeps the cache locality when
iterating operands, improves locality when iterating SDNodes without
looking at operands, and vastly simplifies the ownership semantics.
It also means we stop overallocating SDNodes by 2-3x and will make it
simpler to fix the rampant undefined behaviour we have in how we
mutate SDNodes from one kind to another (See llvm.org/pr26808).
This is NFC other than the changes in memory behaviour, and I ran some
LNT tests to make sure this didn't hurt compile time. Not many tests
changed: there were a couple of 1-2% regressions reported, but there
were more improvements (of up to 4%) than regressions.
llvm-svn: 262902
Looks like the largest SDNode is different between 32 and 64 bit now,
so this is breaking 32 bit bots. Reverting while I figure out a fix.
This reverts r262886.
llvm-svn: 262892
Currently some SDNode operands are malloc'd, some are stored inline in
subclasses of SDNode, and some are thrown into a BumpPtrAllocator.
This scheme is complex, inconsistent, and makes refactoring SDNodes
fairly difficult.
Instead, we can allocate all of the operands using an ArrayRecycler
that wraps a BumpPtrAllocator. This keeps the cache locality when
iterating operands, improves locality when iterating SDNodes without
looking at operands, and vastly simplifies the ownership semantics.
It also means we stop overallocating SDNodes by 2-3x and will make it
simpler to fix the rampant undefined behaviour we have in how we
mutate SDNodes from one kind to another (See llvm.org/pr26808).
This is NFC other than the changes in memory behaviour, and I ran some
LNT tests to make sure this didn't hurt compile time. Not many tests
changed: there were a couple of 1-2% regressions reported, but there
were more improvements (of up to 4%) than regressions.
llvm-svn: 262886
Without actually parsing a type it is difficult to perdict where
the type definition ends. In other words, instead of expecting
the user of the parser API to hand over only the relevant bits
of the string being parsed, take the whole string, parse the type,
and get back the number of characters that have been read.
This will be used by the MIR testing infrastructure.
llvm-svn: 262884
Now the type API is always available, but when global-isel is not
built the implementation does nothing.
Note: The implementation free of ifdefs is WIP and tracked here in PR26576.
llvm-svn: 262873
The mir infrastructure will need this for generic instructions and currently
this feature was only available through the anonymous TypePrinter class.
llvm-svn: 262869
This is useful for MIR serialization. Indeed generic machine instructions
must have a type and we don't want to duplicate the logic in the MIParser.
llvm-svn: 262868
Until now curly braces could only be used in MS inline assembly to mark block start/end.
All curly braces were removed completely at a very early stage.
This approach caused bugs like:
"m{o}v eax, ebx" turned into "mov eax, ebx" without any error.
In addition, AVX-512 added special operands (e.g., k registers), which are also surrounded by curly braces that mark them as such.
Now, we need to keep the curly braces and identify at a later stage if they are marking block start/end (if so, ignore them), or surrounding special AVX-512 operands (if so, parse them as such).
This patch fixes the bug described above and enables the use of AVX-512 special operands.
This commit is the the llvm part of the patch.
The clang part of the review is: http://reviews.llvm.org/D17766
The llvm part of the review is: http://reviews.llvm.org/D17767
Differential Revision: http://reviews.llvm.org/D17767
llvm-svn: 262843
duplicated comments.
In several cases these had diverged making them especially nice to
canonicalize. I checked to make sure we weren't losing important
information of course.
llvm-svn: 262825
arbitrary integers cast to Instruction pointers to a sum type over
Instruction * and a PointerEmbeddedInt.
No functionality changed.
Differential Revision: http://reviews.llvm.org/D15845
llvm-svn: 262823
Just cleaning this up, no functionality changed. Next up will be moving
it to use the sum type instead of arbitrary "pointer"-like enums.
llvm-svn: 262822
the new pass manager.
The port will involve substantial edits here, and would likely introduce
bad formatting if formatted in isolation, so just get all the formatting
up to snuff. I'll also go through and try to freshen the doxygen here as
well as modernizing some of the code.
llvm-svn: 262821
Just like the existing find_as() method, the new insert_as() accepts
an extra parameter which is used as a key to find the bucket in the
map.
When creating a Constant, we want to check the map before actually
creating the object. In this case we have to perform two queries to
the map, and this extra parameter can save recomputing the hash value
for the second query.
This is a reapply of r260458, that was reverted because it was
suspected to be the cause of instability of an internal bot, but
wasn't confirmed.
Differential Revision: http://reviews.llvm.org/D16268
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 262812
this pass exists.
This is based on feedback received when moving this comment from the source
file to a new header file.
Differential Revision: http://reviews.llvm.org/D17476
llvm-svn: 262769
When div+rem calls on the same arguments are found, the ARM back-end merges the
two calls into one __aeabi_divmod call for up to 32-bits values. However,
for 64-bit values, which also have a lib call (__aeabi_ldivmod), it wasn't
merging the calls, and thus calling ldivmod twice and spilling the temporary
results, which generated pretty bad code.
This patch legalises 64-bit lib calls for divmod, so that now all the spilling
and the second call are gone. It also relaxes the DivRem combiner a bit on the
legal type check, since it was already checking for isLegalOrCustom on every
value, so the extra check for isTypeLegal was redundant.
Second attempt, creating TLI.isOperationCustom like isOperationExpand, to make
sure we only emit valid types or the ones that were explicitly marked as custom.
Now, passing check-all and test-suite on x86, ARM and AArch64.
This patch fixes PR17193 (and a long time FIXME in the tests).
llvm-svn: 262738
These correspond to IMAGE_ATOMIC_* and are going to be used by Mesa for the
GL_ARB_shader_image_load_store extension.
Initial change by Nicolai H.hnle
Differential Revision: http://reviews.llvm.org/D17401
llvm-svn: 262701
We have known UB in some ilists where we static cast half nodes to
(larger) derived types and use the address. See llvm.org/PR26753.
This needs to be fixed, but in the meantime it'd be nice if running
ubsan didn't complain. This adds annotations in the two places where
ubsan complains while running check-all of a sanitized clang build.
llvm-svn: 262683
The vast majority of LiveRanges (ie, 4/5) have exactly 1 segment and 1
value number, and a good chunk of the rest have 2 of each, so
allocating space for 4 is wasteful. This is especially noticeable when
dealing with a very large number of vregs, and I have an internal case
where dropping this to 2 shaves over 5% off of peak memory when
compiling a particularly large function.
llvm-svn: 262681
This patch provides the following infrastructure for PGO enhancements in inliner:
Enable the use of block level profile information in inliner
Incremental update of block frequency information during inlining
Update the function entry counts of callees when they get inlined into callers.
Differential Revision: http://reviews.llvm.org/D16381
llvm-svn: 262636
Summary: With discriminator, LineLocation can uniquely identify a callsite without the need to specifying callee name. Remove Callee function name from the key, and put it in the value (FunctionSamples).
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17827
llvm-svn: 262634
Catch objects with a displacement of zero do not initialize a catch
object. The displacement is relative to %rsp at the end of the
function's prologue for x86_64 targets.
If we place an object at the top-of-stack, we will end up wit a
displacement of zero resulting in our catch object remaining
uninitialized.
Address this by creating our catch objects as fixed objects. We will
ensure that the UnwindHelp object is created after the catch objects so
that no catch object will have a displacement of zero.
Differential Revision: http://reviews.llvm.org/D17823
llvm-svn: 262546
The placement new calls here were all calling the allocation function
in RecyclingAllocator/Recycler for SDNode, instead of the function for
the specific subclass we were constructing.
Since this particular allocator always overallocates it more or less
worked, but would hide what we're actually doing from any memory
tools. Also, if you tried to change this allocator so something like a
BumpPtrAllocator or MallocAllocator, the compiler would crash horribly
all the time.
Part of llvm.org/PR26808.
llvm-svn: 262500
parts of the AA interface out of the base class of every single AA
result object.
Because this logic reformulates the query in terms of some other aspect
of the API, it would easily cause O(n^2) query patterns in alias
analysis. These could in turn be magnified further based on the number
of call arguments, and then further based on the number of AA queries
made for a particular call. This ended up causing problems for Rust that
were actually noticable enough to get a bug (PR26564) and probably other
places as well.
When originally re-working the AA infrastructure, the desire was to
regularize the pattern of refinement without losing any generality.
While I think it was successful, that is clearly proving to be too
costly. And the cost is needless: we gain no actual improvement for this
generality of making a direct query to tbaa actually be able to
re-use some other alias analysis's refinement logic for one of the other
APIs, or some such. In short, this is entirely wasted work.
To the extent possible, delegation to other API surfaces should be done
at the aggregation layer so that we can avoid re-walking the
aggregation. In fact, this significantly simplifies the logic as we no
longer need to smuggle the aggregation layer into each alias analysis
(or the TargetLibraryInfo into each alias analysis just so we can form
argument memory locations!).
However, we also have some delegation logic inside of BasicAA and some
of it even makes sense. When the delegation logic is baking in specific
knowledge of aliasing properties of the LLVM IR, as opposed to simply
reformulating the query to utilize a different alias analysis interface
entry point, it makes a lot of sense to restrict that logic to
a different layer such as BasicAA. So one aspect of the delegation that
was in every AA base class is that when we don't have operand bundles,
we re-use function AA results as a fallback for callsite alias results.
This relies on the IR properties of calls and functions w.r.t. aliasing,
and so seems a better fit to BasicAA. I've lifted the logic up to that
point where it seems to be a natural fit. This still does a bit of
redundant work (we query function attributes twice, once via the
callsite and once via the function AA query) but it is *exactly* twice
here, no more.
The end result is that all of the delegation logic is hoisted out of the
base class and into either the aggregation layer when it is a pure
retargeting to a different API surface, or into BasicAA when it relies
on the IR's aliasing properties. This should fix the quadratic query
pattern reported in PR26564, although I don't have a stand-alone test
case to reproduce it.
It also seems general goodness. Now the numerous AAs that don't need
target library info don't carry it around and depend on it. I think
I can even rip out the general access to the aggregation layer and only
expose that in BasicAA as it is the only place where we re-query in that
manner.
However, this is a non-trivial change to the AA infrastructure so I want
to get some additional eyes on this before it lands. Sadly, it can't
wait long because we should really cherry pick this into 3.8 if we're
going to go this route.
Differential Revision: http://reviews.llvm.org/D17329
llvm-svn: 262490
Have ScalarEvolution::getRange re-consider cases like "{C?A:B,+,C?P:Q}"
by factoring out "C" and computing RangeOf{A,+,P} union RangeOf({B,+,Q})
instead.
The latter can be easier to compute precisely in cases like
"{C?0:N,+,C?1:-1}" N is the backedge taken count of the loop; since in
such cases the latter form simplifies to [0,N+1) union [0,N+1).
llvm-svn: 262438
Summary: SampleProfile pass needs to be performed after InstructionCombiningPass, which helps eliminate un-inlinable function calls.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17742
llvm-svn: 262419
TableGen checks at compiletime that for scheduling models with
"CompleteModel = 1" one of the following holds:
- Is marked with the hasNoSchedulingInfo flag
- The instruction is a subclass of Sched
- There are InstRW definitions in the scheduling model
Typical steps necessary to complete a model:
- Ensure all pseudo instructions that are expanded before machine
scheduling (usually everything handled with EmitYYY() functions in
XXXTargetLowering).
- If a CPU does not support some instructions mark the corresponding
resource unsupported: "WriteRes<WriteXXX, []> { let Unsupported = 1; }".
- Add missing scheduling information.
Differential Revision: http://reviews.llvm.org/D17747
llvm-svn: 262384