There's a little bit of churn in this patch because the initialization
mechanism is now shared between the old and the new PM. Other than
that, it's just a pretty mechanical translation.
llvm-svn: 275082
While here move simplifyLoop() function to the new header, as
suggested by Chandler in the review.
Differential Revision: http://reviews.llvm.org/D21404
llvm-svn: 274959
StratifiedSets (as implemented) is very fast, but its accuracy is also
limited. If we take a more aggressive andersens-like approach, we can be
way more accurate, but we'll also end up being slower.
So, we've decided to split CFLAA into CFLSteensAA and CFLAndersAA.
Long-term, we want to end up in a place where CFLSteens is queried
first; if it can provide an answer, great (since queries are basically
map lookups). Otherwise, we'll fall back to CFLAnders, BasicAA, etc.
This patch splits everything out so we can try to do something like
that when we get a reasonable CFLAnders implementation.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21910
llvm-svn: 274589
This pass hoists duplicated computations in the program. The primary goal of
gvn-hoist is to reduce the size of functions before inline heuristics to reduce
the total cost of function inlining.
Pass written by Sebastian Pop, Aditya Kumar, Xiaoyu Hu, and Brian Rzycki.
Important algorithmic contributions by Daniel Berlin under the form of reviews.
Differential Revision: http://reviews.llvm.org/D19338
llvm-svn: 274305
the new pass manager.
This adds operator<< overloads for the various bits of the
LazyCallGraph, dump methods for use from the debugger, and debug logging
using them to the CGSCC pass manager.
Having this was essential for debugging the call graph update patch, and
I've extracted what I could from that patch here to minimize the delta.
llvm-svn: 273961
Access it through -passes=print-lcg-dot
Let me know any suggestions for changing the rendering; I'm not
particularly attached to what is implemented here.
llvm-svn: 273082
This is indeed a much cleaner approach (thanks to Daniel Berlin
for pointing out), and also David/Sean for review.
Differential Revision: http://reviews.llvm.org/D21454
llvm-svn: 273032
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
Daniel Berlin expressed some real concerns about the port and proposed
and alternative approach. I'll revert this for now while working on a
new patch, which I hope to put up for review shortly. Sorry for the churn.
llvm-svn: 272925
This uses the "runImpl" approach to share code with the old PM.
Porting to the new PM meant abandoning the anonymous namespace enclosing
most of SLPVectorizer.cpp which is a bit of a bummer (but not a big deal
compared to having to pull the pass class into a header which the new PM
requires since it calls the constructor directly).
llvm-svn: 272766
The need for all these Lookup* functions is just because of calls to
getAnalysis inside methods (i.e. not at the top level) of the
runOnFunction method. They should be straightforward to clean up when
the old PM is gone.
llvm-svn: 272615
This reverts commit r272603 and adds a fix.
Big thanks to Davide for pointing me at r216244 which gives some insight
into how to fix this VS2013 issue. VS2013 can't synthesize a move
constructor. So the fix here is to add one explicitly to the
JumpThreadingPass class.
llvm-svn: 272607
This follows the approach in r263208 (for GVN) pretty closely:
- move the bulk of the body of the function to the new PM class.
- expose a runImpl method on the new-PM class that takes the IRUnitT and
pointers/references to any analyses and use that to implement the
old-PM class.
- use a private namespace in the header for stuff that used to be file
scope
llvm-svn: 272597
This is a bit gnarly since LVI is maintaining its own cache.
I think this port could be somewhat cleaner, but I'd rather not spend
too much time on it while we still have the old pass hanging around and
limiting how much we can clean things up.
Once the old pass is gone it will be easier (less time spent) to clean
it up anyway.
This is the last dependency needed for porting JumpThreading which I'll
do in a follow-up commit (there's no printer pass for LVI or anything to
test it, so porting a pass that depends on it seems best).
I've been mostly following:
r269370 / D18834 which ported Dependence Analysis
r268601 / D19839 which ported BPI
llvm-svn: 272593
Below are my super rough notes when porting. They can probably serve as
a basic guide for porting other passes to the new PM. As I port more
passes I'll expand and generalize this and make a proper
docs/HowToPortToNewPassManager.rst document. There is also missing
documentation for general concepts and API's in the new PM which will
require some documentation.
Once there is proper documentation in place we can put up a list of
passes that have to be ported and game-ify/crowdsource the rest of the
porting (at least of the middle end; the backend is still unclear).
I will however be taking personal responsibility for ensuring that the
LLD/ELF LTO pipeline is ported in a timely fashion. The remaining passes
to be ported are (do something like
`git grep "<the string in the bullet point below>"` to find the pass):
General Scalar:
[ ] Simplify the CFG
[ ] Jump Threading
[ ] MemCpy Optimization
[ ] Promote Memory to Register
[ ] MergedLoadStoreMotion
[ ] Lazy Value Information Analysis
General IPO:
[ ] Dead Argument Elimination
[ ] Deduce function attributes in RPO
Loop stuff / vectorization stuff:
[ ] Alignment from assumptions
[ ] Canonicalize natural loops
[ ] Delete dead loops
[ ] Loop Access Analysis
[ ] Loop Invariant Code Motion
[ ] Loop Vectorization
[ ] SLP Vectorizer
[ ] Unroll loops
Devirtualization / CFI:
[ ] Cross-DSO CFI
[ ] Whole program devirtualization
[ ] Lower bitset metadata
CGSCC passes:
[ ] Function Integration/Inlining
[ ] Remove unused exception handling info
[ ] Promote 'by reference' arguments to scalars
Please let me know if you are interested in working on any of the passes
in the above list (e.g. reply to the post-commit thread for this patch).
I'll probably be tackling "General Scalar" and "General IPO" first FWIW.
Steps as I port "Deduce function attributes in RPO"
---------------------------------------------------
(note: if you are doing any work based on these notes, please leave a
note in the post-commit review thread for this commit with any
improvements / suggestions / incompleteness you ran into!)
Note: "Deduce function attributes in RPO" is a module pass.
1. Do preparatory refactoring.
Do preparatory factoring. In this case all I had to do was to pull out a static helper (r272503).
(TODO: give more advice here e.g. if pass holds state or something)
2. Rename the old pass class.
llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Rename class ReversePostOrderFunctionAttrs -> ReversePostOrderFunctionAttrsLegacyPass
in preparation for adding a class ReversePostOrderFunctionAttrs as the pass in the new PM.
(edit: actually wait what? The new class name will be
ReversePostOrderFunctionAttrsPass, so it doesn't conflict. So this step is
sort of useless churn).
llvm/include/llvm/InitializePasses.h
llvm/lib/LTO/LTOCodeGenerator.cpp
llvm/lib/Transforms/IPO/IPO.cpp
llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Rename initializeReversePostOrderFunctionAttrsPass -> initializeReversePostOrderFunctionAttrsLegacyPassPass
(note that the "PassPass" thing falls out of `s/ReversePostOrderFunctionAttrs/ReversePostOrderFunctionAttrsLegacyPass/`)
Note that the INITIALIZE_PASS macro is what creates this identifier name, so renaming the class requires this renaming too.
Note that createReversePostOrderFunctionAttrsPass does not need to be
renamed since its name is not generated from the class name.
3. Add the new PM pass class.
In the new PM all passes need to have their
declaration in a header somewhere, so you will often need to add a header.
In this case
llvm/include/llvm/Transforms/IPO/FunctionAttrs.h is already there because
PostOrderFunctionAttrsPass was already ported.
The file-level comment from the .cpp file can be used as the file-level
comment for the new header. You may want to tweak the wording slightly
from "this file implements" to "this file provides" or similar.
Add declaration for the new PM pass in this header:
class ReversePostOrderFunctionAttrsPass
: public PassInfoMixin<ReversePostOrderFunctionAttrsPass> {
public:
PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM);
};
Its name should end with `Pass` for consistency (note that this doesn't
collide with the names of most old PM passes). E.g. call it
`<name of the old PM pass>Pass`.
Also, move the doxygen comment from the old PM pass to the declaration of
this class in the header.
Also, include the declaration for the new PM class
`llvm/Transforms/IPO/FunctionAttrs.h` at the top of the file (in this case,
it was already done when the other pass in this file was ported).
Now define the `run` method for the new class.
The main things here are:
a) Use AM.getResult<...>(M) to get results instead of `getAnalysis<...>()`
b) If the old PM pass would have returned "false" (i.e. `Changed ==
false`), then you should return PreservedAnalyses::all();
c) In the old PM getAnalysisUsage method, observe the calls
`AU.addPreserved<...>();`.
In the case `Changed == true`, for each preserved analysis you should do
call `PA.preserve<...>()` on a PreservedAnalyses object and return it.
E.g.:
PreservedAnalyses PA;
PA.preserve<CallGraphAnalysis>();
return PA;
Note that calls to skipModule/skipFunction are not supported in the new PM
currently, so optnone and optimization bisect support do not work. You can
just drop those calls for now.
4. Add the pass to the new PM pass registry to make it available in opt.
In llvm/lib/Passes/PassBuilder.cpp add a #include for your header.
`#include "llvm/Transforms/IPO/FunctionAttrs.h"`
In this case there is already an include (from when
PostOrderFunctionAttrsPass was ported).
Add your pass to llvm/lib/Passes/PassRegistry.def
In this case, I added
`MODULE_PASS("rpo-functionattrs", ReversePostOrderFunctionAttrsPass())`
The string is from the `INITIALIZE_PASS*` macros used in the old pass
manager.
Then choose a test that uses the pass and use the new PM `-passes=...` to
run it.
E.g. in this case there is a test that does:
; RUN: opt < %s -basicaa -functionattrs -rpo-functionattrs -S | FileCheck %s
I have added the line:
; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<targetlibinfo>,cgscc(function-attrs),rpo-functionattrs' -S | FileCheck %s
The `-aa-pipeline=basic-aa` and
`require<targetlibinfo>,cgscc(function-attrs)` are what is needed to run
functionattrs in the new PM (note that in the new PM "functionattrs"
becomes "function-attrs" for some reason). This is just pulled from
`readattrs.ll` which contains the change from when functionattrs was ported
to the new PM.
Adding rpo-functionattrs causes the pass that was just ported to run.
llvm-svn: 272505
Summary:
There are some rough corners, since the new pass manager doesn't have
(as far as I can tell) LoopSimplify and LCSSA, so I've updated the
tests to run them separately in the old pass manager in the lit tests.
We also don't have an equivalent for AU.setPreservesCFG() in the new
pass manager, so I've left a FIXME.
Reviewers: bogner, chandlerc, davide
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20783
llvm-svn: 271846
Add support for the new pass manager to MemorySSA pass.
Change MemorySSA to be computed eagerly upon construction.
Change MemorySSAWalker to be owned by the MemorySSA object that creates
it.
Reviewers: dberlin, george.burgess.iv
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19664
llvm-svn: 271432
Summary:
Implement guard widening in LLVM. Description from GuardWidening.cpp:
The semantics of the `@llvm.experimental.guard` intrinsic lets LLVM
transform it so that it fails more often that it did before the
transform. This optimization is called "widening" and can be used hoist
and common runtime checks in situations like these:
```
%cmp0 = 7 u< Length
call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
call @unknown_side_effects()
%cmp1 = 9 u< Length
call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
...
```
to
```
%cmp0 = 9 u< Length
call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
call @unknown_side_effects()
...
```
If `%cmp0` is false, `@llvm.experimental.guard` will "deoptimize" back
to a generic implementation of the same function, which will have the
correct semantics from that point onward. It is always _legal_ to
deoptimize (so replacing `%cmp0` with false is "correct"), though it may
not always be profitable to do so.
NB! This pass is a work in progress. It hasn't been tuned to be
"production ready" yet. It is known to have quadriatic running time and
will not scale to large numbers of guards
Reviewers: reames, atrick, bogner, apilipenko, nlewycky
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20143
llvm-svn: 269997
Ported DA to the new PM by splitting the former DependenceAnalysis Pass
into a DependenceInfo result type and DependenceAnalysisWrapperPass type
and adding a new PM-style DependenceAnalysis analysis pass returning the
DependenceInfo.
Patch by Philip Pfaffe, most of the review by Justin.
Differential Revision: http://reviews.llvm.org/D18834
llvm-svn: 269370
allow the transformation to strip invalid debug info.
This patch separates the Verifier into an analysis and a transformation
pass, with the transformation pass optionally stripping malformed
debug info.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
http://reviews.llvm.org/D19988
rdar://problem/25818489
This reapplies r268937 without modifications.
llvm-svn: 268966
allow the transformation to strip invalid debug info.
This patch separates the Verifier into an analysis and a transformation
pass, with the transformation pass optionally stripping malformed
debug info.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
http://reviews.llvm.org/D19988
rdar://problem/25818489
llvm-svn: 268937
It's missing a dependency on Instrumentation (needed for
llvm::InstrProfiling::run(llvm::Module&, llvm::AnalysisManager<llvm::Module>&))
llvm-svn: 266656
clarify their purpose.
Firstly, call them "...Mixin" types so it is clear that there is no
type hierarchy being formed here. Secondly, use the term 'Info' to
clarify that they aren't adding any interesting *semantics* to the
passes or analyses, just exposing APIs used by the management layer to
get information about the pass or analysis.
Thanks to Manuel for helping pin down the naming confusion here and come
up with effective names to address it.
In case you already have some out-of-tree stuff, the following should be
roughly what you want to update:
perl -pi -e 's/\b(Pass|Analysis)Base\b/\1InfoMixin/g'
llvm-svn: 263217
work in the face of the limitations of DLLs and templated static
variables.
This requires passes that use the AnalysisBase mixin provide a static
variable themselves. So as to keep their APIs clean, I've made these
private and befriended the CRTP base class (which is the common
practice).
I've added documentation to AnalysisBase for why this is necessary and
at what point we can go back to the much simpler system.
This is clearly a better pattern than the extern template as it caught
*numerous* places where the template magic hadn't been applied and
things were "just working" but would eventually have broken
mysteriously.
llvm-svn: 263216
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
actually finish wiring up the old call graph.
There were bugs in the old call graph that hadn't been caught because it
wasn't being tested. It wasn't being tested because it wasn't in the
pipeline system and we didn't have a printing pass to run in tests. This
fixes all of that.
As for why I'm still keeping the old call graph alive its so that I can
port GlobalsAA to the new pass manager with out forking it to work with
the lazy call graph. That's clearly the right eventual design, but it
seems pragmatic to defer that until its necessary. The old call graph
works just fine for GlobalsAA.
llvm-svn: 263104
This is a fairly straightforward port to the new pass manager with one
exception. It removes a very questionable use of releaseMemory() in
the old pass to invalidate its caches between runs on a function.
I don't think this is really guaranteed to be safe. I've just used the
more direct port to the new PM to address this by nuking the results
object each time the pass runs. While this could cause some minor malloc
traffic increase, I don't expect the compile time performance hit to be
noticable, and it makes the correctness and other aspects of the pass
much easier to reason about. In some cases, it may make things faster by
making the sets and maps smaller with better locality. Indeed, the
measurements collected by Bruno (thanks!!!) show mostly compile time
improvements.
There is sadly very limited testing at this point as there are only two
tests of memdep, and both rely on GVN. I'll be porting GVN next and that
will exercise this heavily though.
Differential Revision: http://reviews.llvm.org/D17962
llvm-svn: 263082
in the PassBuilder.
These are really just stubs for now, but they give a nice API surface
that Clang or other tools can start learning about and enabling for
experimentation.
I've also wired up parsing various synthetic module pass names to
generate these set pipelines. This allows the pipelines to be combined
with other passes and have their order controlled, with clear separation
between the *kind* of canned pipeline, and the *level* of optimization
to be used within that canned pipeline.
The most interesting part of this patch is almost certainly the spec for
the different optimization levels. I don't think we can ever have hard
and fast rules that would make it easy to determine whether a particular
optimization makes sense at a particular level -- it will always be in
large part a judgement call. But hopefully this will outline the
expected rationale that should be used, and the direction that the
pipelines should be taken. Much of this was based on a long llvm-dev
discussion I started years ago to try and crystalize the intent behind
these pipelines, and now, at long long last I'm returning to the task of
actually writing it down somewhere that we can cite and try to be
consistent with.
Differential Revision: http://reviews.llvm.org/D12826
llvm-svn: 262196
classes changed whether the decltype of these expressions was
a reference. I'm somewhat horrified why, and there may need to be
a deeper fix on MSVC, but this should at least get the bots a step
further.
llvm-svn: 262008
analyses in the new pass manager.
These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.
Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.
This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.
llvm-svn: 262004