It's unclear how the old
%res(32) = G_ICMP { s32, s32 } intpred(eq), %0, %1
is actually different from an s1 verison
%res(1) = G_ICMP { s1, s32 } intpred(eq), %0, %1
so we'll remove it for now.
llvm-svn: 279843
Summary: Dead store elimination gets very expensive when large numbers of instructions need to be analyzed. This patch limits the number of instructions analyzed per store to the value of the memdep-block-scan-limit parameter (which defaults to 100). This resulted in no observed difference in performance of the generated code, and no change in the statistics for the dead store elimination pass, but improved compilation time on some files by more than an order of magnitude.
Reviewers: dexonsmith, bruno, george.burgess.iv, dberlin, reames, davidxl
Subscribers: davide, chandlerc, dberlin, davidxl, eraman, tejohnson, mbodart, llvm-commits
Differential Revision: https://reviews.llvm.org/D15537
llvm-svn: 279833
1. Add the "explicit" specifier to the single-argument constructor of Pattern
2. Reorder the fields to remove excessive padding (8 bytes).
Patch by Alexander Shaposhnikov!
llvm-svn: 279832
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used. See the new comments in
the patch.
Instead we use it directly just like the inliner does in D22694.
As expected there is some additional overhead after removing the caching
provided by analysis passes. The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%. As before, this only
affects -Rpass-with-hotness and not default compilation.
llvm-svn: 279829
Removing the redundant 'CmpRHSV' local variable exposes a bug in the caller
foldICmpShrConstant() - it was sending in the div constant instead of the
cmp constant. But I have not been able to expose this in a regression test
yet - the affected folds all appear to be handled before we ever reach this
code. I'll keep trying to find a case as I make changes to allow vector folds
in both functions.
llvm-svn: 279828
Summary:
In fuctions that contained debug info but were empty otherwise,
the ARM load/store optimizer could abort. This was because
function MergeReturnIntoLDM handled the special case where a
Machine Basic BLock is empty by calling MBB.empty(). However, this
returns false in presence of debug info, although the function
should be considered empty in the eyes of the load/store optimizer.
This has been fixed by handling the case where searching through the
block finds only debug instructions.
Reviewers: rengolin, dexonsmith, llvm-commits, jmolloy
Subscribers: t.p.northover, aemerson, rengolin, samparker
Differential Revision: https://reviews.llvm.org/D23847
llvm-svn: 279820
This function allows getting arbitrary sized block of random bytes.
Primary motivation is support for --build-id=uuid in lld.
Differential revision: https://reviews.llvm.org/D23671
llvm-svn: 279807
This was for some reason skipping operands that are subregisters
instead of keeping the same subregister index.
v_movreld_b32 expects src0 to be the subregister of the tied
super register use/def.
e.g.
v_movreld_b32 v0, v9, <imp-def, tied3> v[0:3], <imp-use, tied2> v[0:3]
was being replaced with
v[4:7] = copy v[0:3]
v_movreld_b32 v0, v9, <imp-def, tied3> v[4:7], <imp-use, tied2> v[4:7],
which really writes to v[0:3]
llvm-svn: 279804
The assertion doesn't always hold true as sizeof(SDNodeBits) isn't equal
to sizeof(uint16_t) for some targets. For example, sizeof(SDNodeBits)
evaluates to 1, not 2, for ARM's APCS targets.
llvm-svn: 279797
This reverts most of r274613 (AKA r274626) and its follow-ups (r276347, r277289),
due to miscompiles in the test suite. The FastISel change was left in, because
it apparently fixes an unrelated issue.
(Recommit of r279782 which was broken due to a bad merge.)
This fixes 4 out of the 5 test failures in PR29112.
llvm-svn: 279788
The InitializerList test had undefined behavior by creating a dangling pointer to the temporary initializer list. This patch removes the undefined behavior in the test by creating the initializer list directly.
Reviewers: mehdi_amini, dblaikie
Differential Revision: https://reviews.llvm.org/D23890
llvm-svn: 279783
This reverts most of r274613 and its follow-ups (r276347, r277289), due to
miscompiles in the test suite. The FastISel change was left in, because it
apparently fixes an unrelated issue.
This fixes 4 out of the 5 test failures in PR29112.
llvm-svn: 279782
Summary:
Install CheckAtomic.cmake along with other LLVM modules, therefore making it possible for other projects to use it. This file is needed for LLDB to be built standalone, and installing it was suggested in https://reviews.llvm.org/D23881.
Patch by: Michał Górny
Reviewers: krytarowski, zturner, eugenis, jyknight, labath, beanz
Subscribers: beanz, llvm-commits
Differential Revision: https://reviews.llvm.org/D23887
llvm-svn: 279777
This patch adds support to the runtimes build for exposing sub-project targets through the high-level configuration. This will enable exposing the build, check and install targets for sub-project components (i.e. asan, check-asan, install-asan...).
This patch requires minor changes to the runtime projects to take advantage of it, and I'll phase those changes into Compiler-RT shortly.
llvm-svn: 279776
Its existence is largely historical, apparently we tried to make ARM object
files look maybe-almost-possibly runnable by putting our best guess at the
actual value into relocated locations. Of course, the real linker then comes
along and can completely change things.
But it should only be there for word-sized and movw/movt relocations. It can't
be encoded in branch relocations, and I've seen it mess up validity
calculations twice in the last couple of weeks so the default is clearly problematic.
llvm-svn: 279773
Summary:
This fixes pr29105. The reason is that lifetime marks creates new
aliasing pointers the original ones, but before this patch aliases
were not checked in performMemCpyToMemSetOptzn.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23846
llvm-svn: 279769
The 32-bit variants of these operations don't depend on the bits not being
operated on, so they also naturally model operations narrower than the actual
register width.
llvm-svn: 279760
Fix VPAVG detection to require AVX512BW, not AVX512F for 512-bit widths,
and change associated asserts to assert in the right direction...
This fixes PR29111.
llvm-svn: 279755
when unroll runtime iteration loop.
In llvm::UnrollRuntimeLoopRemainder, if the loop to be unrolled is the inner
loop inside a loop nest, the scalar evolution needs to be dropped for its
parent loop which is done by ScalarEvolution::forgetLoop. However, we can
postpone forgetLoop to the end of UnrollRuntimeLoopRemainder so TripCountSC
expansion can still reuse existing value.
Differential Revision: https://reviews.llvm.org/D23572
llvm-svn: 279748
It is invalid to hoist stores or loads if they are not executed on all paths
from the hoisting point to the exit of the function. In the testcase, there are
paths in the loop that do not execute the stores or the loads, and so hoisting
them within the loop is unsafe.
The problem is that the current implementation of hoistingFromAllPaths is
incomplete: it walks all blocks dominated by the hoisting point, and does not
return false when the loop contains a path on which the hoisted ld/st is
not executed.
Differential Revision: https://reviews.llvm.org/D23843
llvm-svn: 279732
There's no reason for it to return a signed type. Just return the operand bias in each if instead of starting from 0 and adding in the 'if'.
llvm-svn: 279720
Summary: Asan fails to UnsetAlternateSignalStack if it set by Unix/Signals.inc
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23864
llvm-svn: 279717
MMI must match the function passed, and MF has a handle on MMI. Use that instead
of accepting it as separate argument. No Functional Change.
llvm-svn: 279701
Save the function in the class, and then don't pass it around. This reduces the
number of parameters and makes calls to member functions simpler.
No Functional Change.
llvm-svn: 279700
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
This patch changes LLVM_CONSTEXPR variable declarations to const
variable declarations, since LLVM_CONSTEXPR expands to nothing if the
current compiler doesn't support constexpr. In all of the changed
cases, it looks like the code intended the variable to be const instead
of sometimes-constexpr sometimes-not.
llvm-svn: 279696
There was no logic in foldICmpDivConstant, so no need for a separate function.
The code is directly copy/pasted, so further cleanups to follow.
llvm-svn: 279685
tracksSubRegLiveness only depends on the Subtarget and a cl::opt, there
is not need to change it or save/parse it in a .mir file.
Make the field const and move the initialization LiveIntervalAnalysis to the
MachineRegisterInfo constructor. Also cleanup some code and fix some
instances which better use MachineRegisterInfo::subRegLivenessEnabled() instead
of TargetSubtargetInfo::enableSubRegLiveness().
llvm-svn: 279676
The cost of predicating a diamond is only the instructions that are not shared
between the two branches. Additionally If a predicate clobbering instruction
occurs in the shared portion of the branches (e.g. a cond move), it may still
be possible to if convert the sub-cfg. This change handles these two facts by
rescanning the non-shared portion of a diamond sub-cfg to recalculate both the
predication cost and whether both blocks are pred-clobbering.
Fixed 2 bugs before recommitting. Branch instructions must be compared and found
identical before diamond conversion. Also, predicate-clobbering instructions in
the shared prefix disqualifies a potential diamond conversion. Includes tests
for both.
llvm-svn: 279670
A branch-distance to a Thumb function shouldn't be forced to be odd for
CBZ/CBNZ instructions because (assuming it's within range), it's going to be a
valid, even offset.
llvm-svn: 279665
Summary:
This patch implements readlane/readfirstlane intrinsics.
TODO: need to define a new register class to consider the case
that the source could be a vector register or M0.
Reviewed by:
arsenm and tstellarAMD
Differential Revision:
http://reviews.llvm.org/D22489
llvm-svn: 279660
These are no different in load behaviour to the existing ADD/SUB/MUL/DIV scalar ops but were missing from isNonFoldablePartialRegisterLoad
llvm-svn: 279652
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279650
This patch unifies the data structures we use for mapping instructions from the
original loop to their corresponding instructions in the new loop. Previously,
we maintained two distinct maps for this purpose: WidenMap and ScalarIVMap.
WidenMap maintained the vector values each instruction from the old loop was
represented with, and ScalarIVMap maintained the scalar values each scalarized
induction variable was represented with. With this patch, all values created
for the new loop are maintained in VectorLoopValueMap.
The change allows for several simplifications. Previously, when an instruction
was scalarized, we had to insert the scalar values into vectors in order to
maintain the mapping in WidenMap. Then, if a user of the scalarized value was
also scalar, we had to extract the scalar values from the temporary vector we
created. We now aovid these unnecessary scalar-to-vector-to-scalar conversions.
If a scalarized value is used by a scalar instruction, the scalar value is used
directly. However, if the scalarized value is needed by a vector instruction,
we generate the needed insertelement instructions on-demand.
A common idiom in several locations in the code (including the scalarization
code), is to first get the vector values an instruction from the original loop
maps to, and then extract a particular scalar value. This patch adds
getScalarValue for this purpose along side getVectorValue as an interface into
VectorLoopValueMap. These functions work together to return the requested
values if they're available or to produce them if they're not.
The mapping has also be made less permissive. Entries can be added to
VectorLoopValue map with the new initVector and initScalar functions.
getVectorValue has been modified to return a constant reference to the mapped
entries.
There's no real functional change with this patch; however, in some cases we
will generate slightly different code. For example, instead of an insertelement
sequence following the definition of an instruction, it will now precede the
first use of that instruction. This can be seen in the test case changes.
Differential Revision: https://reviews.llvm.org/D23169
llvm-svn: 279649
I'm not sure if the `!isa<CallInst>(Inst) &&
!isa<TerminatorInst>(Inst))` bit is correct either, but this fixes the
case we know is broken.
llvm-svn: 279647
Includes adding more general support for the pattern: VZEXT_MOVL(VZEXT_LOAD(ptr)) -> VZEXT_LOAD(ptr)
This has unearthed a couple of latent poor codegen issues (MINSS/MAXSS scalar load folding and MOVDDUP/BROADCAST load folding patterns), which will be fixed shortly.
Its also reduced a couple of tests so that they no longer reach the instruction threshold necessary to be combined to PSHUFB (see PR26183).
llvm-svn: 279646
Summary:
With support now in the new LTO API for caching (r279576), add
optional ThinLTO caching in the gold-plugin.
Reviewers: mehdi_amini
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23836
llvm-svn: 279631
This patch includes the following changes:
- Included header "Code coverage report" and include the date that the report was created.
- Included title (as specified in a command line option, (i.e llvm-cov -project-title="Simple Test")
- In the summary, list the elf files that the source code file has contributed to.
- Used column heading for "Line No.", "Count No.", Source".
Differential Revision: https://reviews.llvm.org/D23345
llvm-svn: 279628
I deleted a fold from InstCombine at:
https://reviews.llvm.org/rL279568
because it (like any InstCombine to a constant?) should always happen in InstSimplify,
however, it's not obvious what the assumptions are in the remaining code.
Add a comment and assert to make it clearer.
Differential Revision: https://reviews.llvm.org/D23819
llvm-svn: 279626
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625
Extend instruction definitions from nearly all ISAs to include
appropriate instruction itineraries. Change MIPS16s gp prologue
generation to use real instructions instead of using a pseudo
instruction.
Reviewers: dsanders, vkalintiris
Differential Review: https://reviews.llvm.org/D23548
llvm-svn: 279623
div/rem instructions in basic blocks that require predication currently prevent
vectorization. This patch extends the existing mechanism for predicating stores
to handle other instructions and leverages it to predicate divs and rems.
Differential Revision: https://reviews.llvm.org/D22918
llvm-svn: 279620
Consecutive load matching (EltsFromConsecutiveLoads) currently uses VZEXT_LOAD (load scalar into lowest element and zero uppers) for vXi64 / vXf64 vectors only.
For vXi32 / vXf32 vectors it instead creates a scalar load, SCALAR_TO_VECTOR and finally VZEXT_MOVL (zero upper vector elements), relying on tablegen patterns to match this into an equivalent of VZEXT_LOAD.
This patch adds the VZEXT_LOAD patterns for vXi32 / vXf32 vectors directly and updates EltsFromConsecutiveLoads to use this.
This has proven necessary to allow us to easily make VZEXT_MOVL a full member of the target shuffle set - without this change the call to combineShuffle (which is the main caller of EltsFromConsecutiveLoads) tended to recursively recreate VZEXT_MOVL nodes......
Differential Revision: https://reviews.llvm.org/D23673
llvm-svn: 279619
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
Summary:
This patch adds coroutine frame building algorithm. Now, simple coroutines such as ex0.ll and ex1.ll (first examples from docs\Coroutines.rst can be compiled).
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
...
7. Split coroutine into subfunctions. (https://reviews.llvm.org/D23461)
8. Coroutine Frame Building algorithm <= we are here
9. Add f.cleanup subfunction.
10+. The rest of the logic
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23586
llvm-svn: 279609
We should not consider subregister definitions as reads for schedule
model purposes (they are just modeled as reads of the overal vreg for
liveness calculation purposes, the CPU instructions are not actually
reading).
Unfortunately I cannot submit a test for this as it requires a target
which uses ReadAdvance annotation in the scheduling model and has
subregister liveness enabled at the same time, which is only the case on
an out of tree target.
llvm-svn: 279604
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279602
Specifying isSSA is an extra line at best and results in invalid MI at
worst. Compute the value instead.
Differential Revision: http://reviews.llvm.org/D22722
llvm-svn: 279600
Change this pass constructor to just accept a const TargetMachine * and
use INITIALIZE_TM_PASS, that way we can get rid of the dummy
constructor. The pass will still fail when calling the default
constructor leading to TM == nullptr, this is no different than before
but is more in line what other codegen passes are doing and avoids the
dummy constructor.
llvm-svn: 279598
Summary:
This is part of a serious of patches to evolve ADCE.cpp to support
removing of unnecessary control flow.
This patch adds the ability to compute control dependences using
the iterated dominance frontier. We extend the liveness propagation
to alternate between data and control dependences until convergences.
Modify the pass manager intergation to compute the post-dominator tree
needed for iterator dominance frontier.
We still force all terminators live for now until we add code to
handlinge removing control flow in a later patch.
No changes to effective behavior with this patch
Previous patches:
D23225 [ADCE] Modify data structures to support removing control flow
D23065 [ADCE] Refactor anticipating new functionality (NFC)
D23102 [ADCE] Refactoring for new functionality (NFC)
Reviewers: nadav, majnemer, mehdi_amini
Subscribers: twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D23559
llvm-svn: 279594
Summary:
In clang commit r268509 we started to invoke loop-unroll pass from the
driver even under -Os. However, we happen to not initialize optsize
thresholds properly, which si fixed with this change.
r268509 led to some big compile time regressions, because we started to
unroll some loops that we didn't unroll before. With this change I hope
to recover most of the regressions. We still are slightly slower than
before, because we do some checks here and there in loop-unrolling
before we bail out, but at least the slowdown is not that huge now.
Reviewers: hfinkel, chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23388
llvm-svn: 279585
since 2015 (n4387), though it's allowed by a library DR so new implementations
accept it in their C++11 modes...
This should unbreak the build with libstdc++ 4.9.
llvm-svn: 279583
While these directives are mostly aliases for the existing integer
and float value directives, some of them like .dc.a have no direct
equivalents and are sometimes being used for convenience.
Differential Revision: https://reviews.llvm.org/D23810
llvm-svn: 279577
Add the ability to plug a cache on the LTO API.
I tried to write such that a linker implementation can
control the cache backend. This is intrusive and I'm
not totally happy with it, but I can't figure out a
better design right now.
Differential Revision: https://reviews.llvm.org/D23599
llvm-svn: 279576
There will only be 3 lines of code in foldICmpShrConst() when the cleanup is done,
so it doesn't make much sense to have a separate function for a single fold.
llvm-svn: 279575
I want to compute the SSA property of .mir files automatically in
upcoming patches. The problem with this is that some inputs will be
reported as static single assignment with some passes claiming not to
support SSA form. In reality though those passes do not support PHI
instructions => Track the presence of PHI instructions separate from the
SSA property.
Differential Revision: https://reviews.llvm.org/D22719
llvm-svn: 279573
AFAICT, these already worked in all cases for scalar types, and I enhanced
the code to work for vector types in:
https://reviews.llvm.org/rL279543
llvm-svn: 279568
They really should have both types represented, but early variants were created
before MachineInstrs could have multiple types so they're rather ambiguous.
llvm-svn: 279567
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279564
The test case included with r279125 exposed an existing signed integer
overflow. Since getTreeCost can return INT_MAX, we can't sum this cost together
with other costs, such as getReductionCost.
This patch removes the possibility of assigning a cost of INT_MAX. Since we
were previously using INT_MAX as an indicator for "should not vectorize", we
now explicitly check this condition with "isTreeTinyAndNotFullyVectorizable"
before computing a cost.
This patch adds a run-line to the test case used for r279125 that ensures we
don't vectorize. Previously, this line would vectorize the test case by chance
due to undefined behavior in the cost calculation.
Differential Revision: https://reviews.llvm.org/D23723
llvm-svn: 279562
Instructions like G_ICMP have multiple types that may need to be legalized (the
boolean output and nearly arbitrary inputs in this case). So the legalizer must
be capable of deciding what to do for each of them separately.
llvm-svn: 279554
Summary:
I assume there was a use case, so maybe this strawman patch will help
clarifying if it is legit.
In any case the current situation is not legit: a ThinLTO compilation
should not trigger an unexpected full LTO compilation.
Right now, adding a --save-temps option triggers this and makes the
number of output differs.
Reviewers: tejohnson
Subscribers: pcc, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23600
llvm-svn: 279550
Summary:
This greatly simplifies our handling of SDNode::SubclassData.
NFC, hopefully. :)
See discussion in D23035 for discussion about the design API of these
bitfields.
Reviewers: chandlerc
Subscribers: llvm-commits, rnk
Differential Revision: https://reviews.llvm.org/D23036
llvm-svn: 279537
An important performance setting on the LLVMContext for LTO is
enableDebugTypeODRUniquing(), this adds an automatic merging of
debug information in the context based on type ids.
Also, the lto::Config includes a diagnostic handler that needs to
be set on the Context, as well as the setDiscardValueNames() setting.
llvm-svn: 279532
...because like the corresponding code, this is just too big to keep adding to.
And the next step is to add a vector version of each of these tests to show
missed folds.
Also, auto-generate CHECK lines and add comments for the tests that correspond to
the source code.
llvm-svn: 279530
That commit added a new version of Intrinsic::getName which should only
be called when the intrinsic has no overloaded types. There are several
debugging paths, such as SDNode::dump which are printing the name of the
intrinsic but don't have the overloaded types. These paths should be ok
to just print the name instead of crashing.
The fix here is ultimately to just add a 'None' second argument as that
calls the overload capable getName, which is less efficient, but this is a
debugging path anyway, and not perf critical.
Thanks to Björn Pettersson for pointing out that there were more crashes.
llvm-svn: 279528
I'll rename this to IListTest.cpp after a waiting period (tonight?
tomorrow?), with a full explanation in that commit.
First, I'm moving it aside because Git doesn't play well with case-only
filename changes on case-insensitive file systems (and I suspect the
same is true of SVN). This two-stage change should help to avoid
spurious failures on bots that don't do clean checkouts.
llvm-svn: 279524
The change in r279105 causes an infinite loop in some cases, as it sets the upper bits of an AND mask constant, which DAGCombiner::SimplifyDemandedBits then unsets.
This patch reverts that part of the behaviour, instead relying on .td peepholes to perform the transformation to NILL. I reapplied my original fix for the problem addressed by r279105 (unsetting the upper bits, which prevents a compiler abort for a different reason).
Differential Revision: https://reviews.llvm.org/D23781
llvm-svn: 279515
There is not an official documented ABI for frame pointers in Thumb2,
but we should try to emit something which is useful.
We use r7 as the frame pointer for Thumb code, which currently means
that if a function needs to save a high register (r8-r11), it will get
pushed to the stack between the frame pointer (r7) and link register
(r14). This means that while a stack unwinder can follow the chain of
frame pointers up the stack, it cannot know the offset to lr, so does
not know which functions correspond to the stack frames.
To fix this, we need to push the callee-saved registers in two batches,
with the first push saving the low registers, fp and lr, and the second
push saving the high registers. This is already implemented, but
previously only used for iOS. This patch turns it on for all Thumb2
targets when frame pointers are required by the ABI, and the frame
pointer is r7 (Windows uses r11, so this isn't a problem there). If
frame pointer elimination is enabled we still emit a single push/pop
even if we need a frame pointer for other reasons, to avoid increasing
code size.
We must also ensure that lr is pushed to the stack when using a frame
pointer, so that we end up with a complete frame record. Situations that
could cause this were rare, because we already push lr in most
situations so that we can return using the pop instruction.
Differential Revision: https://reviews.llvm.org/D23516
llvm-svn: 279506
Summary: GVNHoist: Use the pass version of MemorySSA and preserve it.
Reviewers: sebpop, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23782
llvm-svn: 279504
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279502
branches
Looping over all terminators exposed AArch64 tests hitting
an assert from analyzeBranch failing. I believe these cases
were miscompiled before.
e.g.
fcmp s0, s1
b.ne LBB0_1
b.vc LBB0_2
b LBB0_2
LBB0_1:
; Large block
LBB0_2:
; ...
Both of the individual conditional branches need to
be expanded, since neither can reach the final block.
Split the original block into ones which analyzeBranch
will be able to understand.
llvm-svn: 279499
Given that we're not currently using blocker info, and whether or not we
will end up using it it is unclear, don't waste 8 (or 4) bytes of memory
per path node.
llvm-svn: 279493
And add a FIXME because the helper excludes folds for vectors. It's
not clear yet how many of these are actually testable (and therefore
necessary?) because later analysis uses computeKnownBits and other
methods to catch many of these cases.
llvm-svn: 279492
The assert in r279466 checks that we call the correct version of
Intrinsic::getName. The version which accepts only an ID should not
be used for intrinsics with overloaded types. The global-isel
code was calling the wrong version. The test CodeGen/AArch64/GlobalISel/arm64-irtranslator.ll
will ensure that we call the correct version from now on.
llvm-svn: 279487
Separate algorithms in iplist<T> that don't depend on T into ilist_base,
and unit test them.
While I was adding unit tests for these algorithms anyway, I also added
unit tests for ilist_node_base and ilist_sentinel<T>.
To make the algorithms and unit tests easier to write, I also did the
following minor changes as a drive-by:
- encapsulate Prev/Next in ilist_node_base to so that algorithms are
easier to read, and
- update ilist_node_access API to take nodes by reference.
There should be no real functionality change here.
llvm-svn: 279484
Summary: Before the change, *Opt never actually gets updated by the end
of toNext(), so for every next time the loop has to start over from
child_begin(). This bug doesn't affect the correctness, since Visited prevents
it from re-entering the same node again; but it's slow.
Reviewers: dberris, dblaikie, dannyb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23649
llvm-svn: 279482
Remove all the dead code around ilist_*sentinel_traits. This is a
follow-up to gutting them as part of r279314 (originally r278974),
staged to prevent broken builds in sub-projects.
Uses were removed from clang in r279457 and lld in r279458.
llvm-svn: 279473
Xcode and MSVC list the headers and source files for each library.
LLVMSupport lists included the source files for ADT but not the headers. This
add the ADT headers so that they are browsable by the UI.
llvm-svn: 279470
Philip commented on r279113 to ask for better comments as to
when to use the different versions of getName. Its also possible
to assert in the simple case that we aren't an overloaded intrinsic
as those have to use the more capable version of getName.
Thanks for the comments Philip.
llvm-svn: 279466
Do most of the lowering in a pre-RA pass. Keep the skip jump
insertion late, plus a few other things that require more
work to move out.
One concern I have is now there may be COPY instructions
which do not have the necessary implicit exec uses
if they will be lowered to v_mov_b32.
This has a positive effect on SGPR usage in shader-db.
llvm-svn: 279464
[Recommitting now an unrelated assertion in SROA is sorted out]
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
Round 4. This time we should handle all instructions correctly, and not replace any operands that need to be constant with variables.
This was really hard to determine safely, so the helper function should be put into the Instruction API. I'll do that as a followup.
llvm-svn: 279460
__guard_local is defined as long on OpenBSD. If the source file contains
a definition of __guard_local, it mismatches with the int8 pointer type
used in LLVM. In that case, Module::getOrInsertGlobal() returns a
cast operation instead of a GlobalVariable. Trying to set the
visibility on the cast operation leads to random segfaults (seen when
compiling the OpenBSD kernel, which also runs with stack protection).
In the kernel, the hidden attribute does not matter. For userspace code,
__guard_local is defined as hidden in the startup code. If a program
re-defines __guard_local, the definition from the startup code will
either win or the linker complains about multiple definitions
(depending on whether the re-defined __guard_local is placed in the
common segment or not).
It also matches what gcc on OpenBSD does.
Thanks Stefan Kempf <sisnkemp@gmail.com> for the patch!
Differential Revision: http://reviews.llvm.org/D23674
llvm-svn: 279449
Summary: We can allow sinking if the single user block has only one unique predecessor, regardless of the number of edges. Note that a switch statement with multiple cases can have the same destination.
Reviewers: mcrosier, majnemer, spatel, reames
Subscribers: reames, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D23722
llvm-svn: 279448
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
Round 4. This time we should handle all instructions correctly, and not replace any operands that need to be constant with variables.
This was really hard to determine safely, so the helper function should be put into the Instruction API. I'll do that as a followup.
llvm-svn: 279443
Assembler directives .dtprelword, .dtpreldword, .tprelword, and
.tpreldword generates relocations R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64,
R_MIPS_TLS_TPREL32, and R_MIPS_TLS_TPREL64 respectively.
The main motivation for this patch is to be able to write test cases
for checking correctness of the LLD linker's behaviour.
Differential Revision: https://reviews.llvm.org/D23669
llvm-svn: 279439
It use to be non-const for the sole purpose of custom handling of
commons symbol. This is moved now in the regular LTO handling now
and such we can constify the callback.
llvm-svn: 279438
This change cause performance regression on MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt from LNT and some other bechmarks.
See https://reviews.llvm.org/D18777 for details.
llvm-svn: 279433
This change needs to be reverted in order to revert -r278267 which cause performance regression on MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt from LNT and some other bechmarks.
See comments on https://reviews.llvm.org/D18777 for details.
llvm-svn: 279432
As discussed on PR26491, we are missing the opportunity to make use of the smaller MOVHLPS instruction because we set both arguments of a SHUFPD when using it to lower a single input shuffle.
This patch sets the lowered argument to UNDEF if that shuffle element is undefined. This in turn makes it easier for target shuffle combining to decode UNDEF shuffle elements, allowing combines to MOVHLPS to occur.
A fix to match against MOVHPD stores was necessary as well.
This builds on the improved MOVLHPS/MOVHLPS lowering and memory folding support added in D16956
Adding similar support for SHUFPS will have to wait until have better support for target combining of binary shuffles.
Differential Revision: https://reviews.llvm.org/D23027
llvm-svn: 279430
This tries to keep all the ModRM memory and register forms in their own regions of the encodings. Hoping to make it simple on some of the switch statements that operate on these encodings.
llvm-svn: 279422
The gold-plugin was doing this internally, now the API is handling
commons correctly based on the given resolution.
Differential Revision: https://reviews.llvm.org/D23739
llvm-svn: 279417
Summary: r279379 introduced crash on arm 32bit bot. I suspect this is alignment issue.
Reviewers: eugenis
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D23762
llvm-svn: 279413
The callers still have ConstantInt guards, so there is no functional change
intended from this change. But relaxing the callers will allow more folds
for vector types.
llvm-svn: 279396
In some cases, FastIsel was emitting TEST instruction with K reg input, which is illegal.
Changed to using KORTEST when dealing with K regs.
Differential Revision: https://reviews.llvm.org/D23163
llvm-svn: 279393
This fixes the crash from PR29072, where the MachineBasicBlock::iterator
wasn't being properly checked against MachineBasicBlock::end() before
iterating. This was another bug exposed by the new
ilist::iterator::operator*() assertion from r279314.
This testcase is poor quality. bugpoint couldn't reduce any further,
and I haven't had time to dig into what's going on so I can't invent a
better one. I didn't even get good CHECK lines in: this is just a
crasher.
I'm committing anyway since this is a real crash with an obvious fix,
but I'll leave PR29072 open and ask an ARM maintainer to help improve
the testcase.
llvm-svn: 279391
Summary:
We can insert function call instead of multiple store operation.
Current default is blocks larger than 64 bytes.
Changes are hidden behind -asan-experimental-poisoning flag.
PR27453
Differential Revision: https://reviews.llvm.org/D23711
llvm-svn: 279383
Summary:
Callbacks are not being used yet.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23634
llvm-svn: 279380
Summary: Reduce store size to avoid leading and trailing zeros.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23648
llvm-svn: 279379
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279373
The test case included in r279125 exposed existing undefined behavior in the
SLP vectorizer that it did not introduce. This patch reapplies the original
patch, but modifies the test case to avoid hitting the undefined behavior. This
allows us to close PR28330 while keeping the UBSan bot happy. The undefined
behavior the original test uncovered will be addressed in a follow-on patch.
Reference: https://llvm.org/bugs/show_bug.cgi?id=28330
llvm-svn: 279370
unit for use in the PreservedAnalyses set.
This doesn't have any important functional change yet but it cleans
things up and makes the analysis substantially more efficient by
avoiding querying through the type erasure for every analysis.
I also think it makes it much easier to reason about how analyses are
preserved when walking across pass managers and across IR unit
abstractions.
Thanks to Sean and Mehdi both for the comments and suggestions.
Differential Revision: https://reviews.llvm.org/D23691
llvm-svn: 279360
Summary:
The gold-plugin changes added along with the new LTO API in r278338 had
the effect of removing the management of the PluginInputFile that
ensured the files weren't released back to gold until the backend
threads were complete. Add back the old file handling.
Fixes PR29020.
Reviewers: mehdi_amini
Subscribers: mehdi_amini, llvm-commits, hjl.tools
Differential Revision: https://reviews.llvm.org/D23721
llvm-svn: 279356
Summary:
Start bringing llvm-lto2 to a level where we can test the LTO API
a bit deeper.
Reviewers: tejohnson
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23681
llvm-svn: 279349
This is a partial enablement (move the ConstantInt guard down) because there are many
different folds here and one of the later ones will require reworking 'isSignBitCheck'.
llvm-svn: 279339
- Always compile print() regardless of LLVM_ENABLE_DUMP. (We usually
only gard dump() functions with that).
- Only show the set properties to reduce output clutter.
- Remove the unused variant that even shows the unset properties.
- Fix comments
llvm-svn: 279338
Currently nodes_iterator may dereference to a NodeType* or a NodeType&. Make them all dereference to NodeType*, which is NodeRef later.
Differential Revision: https://reviews.llvm.org/D23704
Differential Revision: https://reviews.llvm.org/D23705
llvm-svn: 279326
Summary:
This switches us to use a different, more powerful algorithm for address
space inference. I've tested this locally and it seems to work great.
Once we're more confident in it, we can remove the old pass altogether.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: https://reviews.llvm.org/D23694
llvm-svn: 279317
This reverts commit r279053, reapplying r278974 after fixing PR29035
with r279104.
Note that r279312 has been committed in the meantime, and this has been
rebased on top of that. Otherwise it's identical to r278974.
Note for maintainers of out-of-tree code (that I missed in the original
message): if the new isKnownSentinel() assertion is firing from
ilist_iterator<>::operator*(), this patch has identified a bug in your
code. There are a few common patterns:
- Some IR-related APIs htake an IRUnit* that might be nullptr, and pass
in an incremented iterator as an insertion point. Some old code was
using "&*++I", which in the case of end() only worked by fluke. If
the IRUnit in question inherits from ilist_node_with_parent<>, you can
use "I->getNextNode()". Otherwise, use "List.getNextNode(*I)".
- In most other cases, crashes on &*I just need to check for I==end()
before dereferencing.
- There's also occasional code that sends iterators into a function, and
then starts calling I->getOperand() (or other API). Either check for
end() before the entering the function, or early exit.
Note for if the static_assert with HasObsoleteCustomization is firing
for you:
- r278513 has examples of how to stop using custom sentinel traits.
- r278532 removed ilist_nextprev_traits since no one was using it. See
lld's r278469 for the only migration I needed to do.
Original commit message follows.
----
This removes the undefined behaviour (UB) in ilist/ilist_node/etc.,
mainly by removing (gutting) the ilist_sentinel_traits customization
point and canonicalizing on a single, efficient memory layout. This
fixes PR26753.
The new ilist is a doubly-linked circular list.
- ilist_node_base has two ilist_node_base*: Next and Prev. Size-of: two
pointers.
- ilist_node<T> (size-of: two pointers) is a type-safe wrapper around
ilist_node_base.
- ilist_iterator<T> (size-of: two pointers) operates on an
ilist_node<T>*, and downcasts to T* on dereference.
- ilist_sentinel<T> (size-of: two pointers) is a wrapper around
ilist_node<T> that has some extra API for list management.
- ilist<T> (size-of: two pointers) has an ilist_sentinel<T>, whose
address is returned for end().
The new memory layout matches ilist_half_embedded_sentinel_traits<T>
exactly. The Head pointer that previously lived in ilist<T> is
effectively glued to the ilist_half_node<T> that lived in
ilist_half_embedded_sentinel_traits<T>, becoming the Next and Prev in
the ilist_sentinel_node<T>, respectively. sizeof(ilist<T>) is now the
size of two pointers, and there is never any additional storage for a
sentinel.
This is a much simpler design for a doubly-linked list, removing most of
the corner cases of list manipulation (add, remove, etc.). In follow-up
commits, I intend to move as many algorithms as possible into a
non-templated base class (ilist_base) to reduce code size.
Moreover, this fixes the UB in ilist_iterator/getNext/getPrev
operations. Previously, ilist_iterator<T> operated on a T*, even when
the sentinel was not of type T (i.e., ilist_embedded_sentinel_traits and
ilist_half_embedded_sentinel_traits). This added UB to all operations
involving end(). Now, ilist_iterator<T> operates on an ilist_node<T>*,
and only downcasts when the full type is guaranteed to be T*.
What did we lose? There used to be a crash (in some configurations) on
++end(). Curiously (via UB), ++end() would return begin() for users of
ilist_half_embedded_sentinel_traits<T>, but otherwise ++end() would
cause a nice dependable nullptr dereference, crashing instead of a
possible infinite loop. Options:
1. Lose that behaviour.
2. Keep it, by stealing a bit from Prev in asserts builds.
3. Crash on dereference instead, using the same technique.
Hans convinced me (because of the number of problems this and r278532
exposed on Windows) that we really need some assertion here, at least in
the short term. I've opted for #3 since I think it catches more bugs.
I added only a couple of unit tests to root out specific bugs I hit
during bring-up, but otherwise this is tested implicitly via the
extensive usage throughout LLVM.
Planned follow-ups:
- Remove ilist_*sentinel_traits<T>. Here I've just gutted them to
prevent build failures in sub-projects. Once I stop referring to them
in sub-projects, I'll come back and delete them.
- Add ilist_base and move algorithms there.
- Check and fix move construction and assignment.
Eventually, there are other interesting directions:
- Rewrite reverse iterators, so that rbegin().getNodePtr()==&*rbegin().
This allows much simpler logic when erasing elements during a reverse
traversal.
- Remove ilist_traits::createNode, by deleting the remaining API that
creates nodes. Intrusive lists shouldn't be creating nodes
themselves.
- Remove ilist_traits::deleteNode, by (1) asserting that lists are empty
on destruction and (2) changing API that calls it to take a Deleter
functor (intrusive lists shouldn't be in the memory management
business).
- Reconfigure the remaining callback traits (addNodeToList, etc.) to be
higher-level, pulling out a simple_ilist<T> that is much easier to
read and understand.
- Allow tags (e.g., ilist_node<T,tag1> and ilist_node<T,tag2>) so that T
can be a member of multiple intrusive lists.
llvm-svn: 279314
This spiritually reapplies r279012 (reverted in r279052) without the
r278974 parts. The differences:
- Only the HasGetNext trait exists here, so I've only cleaned up (and
tested) it. I still added HasObsoleteCustomization since I know
this will be expanding when r278974 is reapplied.
- I changed the unit tests to use static_assert to catch problems
earlier in the build.
- I added negative tests for the type traits.
Original commit message follows.
----
Change the ilist traits to use decltype instead of sizeof, and add
HasObsoleteCustomization so that additions to this list don't
need to be added in two places.
I suspect this will now work with MSVC, since the trait tested in
r278991 seems to work. If for some reason it continues to fail on
Windows I'll follow up by adding back the #ifndef _MSC_VER.
llvm-svn: 279312
This adds a G_INSERT instruction, which technically makes G_SEQUENCE redundant
(it's equivalent to a G_INSERT into an IMPLICIT_DEF). We'll leave G_SEQUENCE
for now though: it's likely to be far more common as it's a fundamental part of
legalization, so avoiding the mess and bloat of the extra IMPLICIT_DEFs is
probably worthwhile.
llvm-svn: 279306
Summary: This way they can be re-used by target-specific schedulers.
Reviewers: atrick, MatzeB, kparzysz
Subscribers: kparzysz, llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D23678
llvm-svn: 279305
Specifically, this is done near the end of "SimplifyICmpInst" using
computeKnownBits() as the broader solution. There are even vector
tests (yay!) for this in test/Transforms/InstSimplify/compare.ll.
I considered putting an assert here instead of just deleting, but
then we could assert every possible fold in InstSimplify in
InstCombine, so...less is more?
llvm-svn: 279300
They can be deleted or replicated, so the cache may become outdated.
They only need to be visited once during frame lowering, so just scan
the function instead.
llvm-svn: 279297
was done to hopefully appease MSVC.
As an upside, this also implements the suggestion Sanjoy made in code
review, so two for one! =]
I'll be watching the bots to see if there are still issues.
llvm-svn: 279295
First, make sure all types involved are represented, rather than being implicit
from the register width.
Second, canonicalize all types to scalar. These operations just act in bits and
don't care about vectors.
Also standardize spelling of Indices in the MachineIRBuilder (NFC here).
llvm-svn: 279294
Unsigned addition and subtraction can reuse the instructions created to
legalize large width operations (i.e. both produce and consume a carry flag).
Signed operations and multiplies get a dedicated op-with-overflow instruction.
Once this is produced the two values are combined into a struct register (which
will almost always be merged with a corresponding G_EXTRACT as part of
legalization).
llvm-svn: 279278
Repeated inserts into AliasSetTracker have quadratic behavior - inserting a
pointer into AST is linear, since it requires walking over all "may" alias
sets and running an alias check vs. every pointer in the set.
We can avoid this by tracking the total number of pointers in "may" sets,
and when that number exceeds a threshold, declare the tracker "saturated".
This lumps all pointers into a single "may" set that aliases every other
pointer.
(This is a stop-gap solution until we migrate to MemorySSA)
This fixes PR28832.
Differential Revision: https://reviews.llvm.org/D23432
llvm-svn: 279274
This doesn't change tests codegen as we already combined to blend+zero which is what we lower VZEXT_MOVL to on SSE41+ targets, but it does put us in a better position when we improve shuffling for optsize.
llvm-svn: 279273
The intended transform is:
// Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
// -> and (icmp eq P, null), (icmp eq Q, null).
P and Q are both pointer types, but may have different types. We need
two calls to getNullValue() to make the icmps.
llvm-svn: 279271
Summary: We will need these in AMDGPU's new SchedStrategy implmentation.
Reviewers: MatzeB, atrick
Subscribers: llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D23679
llvm-svn: 279270
CGSCC use a WeakVH to track call sites. RAUW a call within a function
can result in that WeakVH getting confused about whether or not the call
site is still around.
llvm-svn: 279268
Of course, we really need to refactor and fix all of the cmp predicates,
but this one is interesting because without it, we later perform an
information-losing transform of icmp (shl 1, Y), C, and we can't recover
the better fold.
llvm-svn: 279263
In addition, the branch instructions will have proper BB destinations, not offsets, like before.
Patch by Vadzim Dambrouski!
Differential Revision: https://reviews.llvm.org/D20162
llvm-svn: 279242
Improved handling of fma, floating point min/max, additional load/store
instructions for floating point types.
Patch by Jyotsna Verma.
llvm-svn: 279239
solve completely opaque MSVC build errors. It complains about lots of
stuff with this change without givin nearly enough information to even
try to fix.
llvm-svn: 279231
INSERTPS doesn't fit well with our shuffle mask canonicalization, so we need to attempt both the original mask and the commuted mask to more likely get a match
llvm-svn: 279230
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
llvm-svn: 279229
to run methods, both for transform passes and analysis passes.
This also allows the analysis manager to use a different set of extra
arguments from the pass manager where useful. Consider passes over
analysis produced units of IR like SCCs of the call graph or loops.
Passes of this nature will often want to refer to the analysis result
that was used to compute their IR units (the call graph or LoopInfo).
And for transformations, they may want to communicate special update
information to the outer pass manager. With this change, it becomes
possible to have a run method for a loop pass that looks more like:
PreservedAnalyses run(Loop &L, AnalysisManager<Loop, LoopInfo> &AM,
LoopInfo &LI, LoopUpdateRecord &UR);
And to query the analysis manager like:
AM.getResult<MyLoopAnalysis>(L, LI);
This makes accessing the known-available analyses convenient and clear,
and it makes passing customized data structures around easy.
My initial use case is going to be in updating the pass manager layers
when the analysis units of IR change. But there are more use cases here
such as having a layer that lets inner passes signal whether certain
additional passes should be run because of particular simplifications
made. Two desires for this have come up in the past: triggering
additional optimization after successfully unrolling loops, and
triggering additional inlining after collapsing indirect calls to direct
calls.
Despite adding this layer of generic extensibility, the *only* change to
existing, simple usage are for places where we forward declare the
AnalysisManager template. We really shouldn't be doing this because of
the fragility exposed here, but currently it makes coping with the
legacy PM code easier.
Differential Revision: http://reviews.llvm.org/D21462
llvm-svn: 279227
r279217 where it fails to select the path that other compilers select.
The workaround won't be as careful to produce an error when an analysis
result is incorrect, but we can rely on non-MSVC builds to catch such
errors it seems and MSVC doesn't seem to support the alternative
techniques.
Hoping this brings the windows bots back to life. If not, will have to
revert all of this.
llvm-svn: 279225
The heuristic above this code is incredibly suspect, but disregarding that it mutates the cast opcode so we need to check the *mutated* opcode later to see if we need to emit an AssertSext or AssertZext node.
Fixes PR29041.
llvm-svn: 279223
into the AnalysisManager class template.
Back when I first added this base class there were separate analysis
managers and some plausible reason why it would be a useful factoring of
common code between them. However, after a lot of refactoring cleaning,
we now have *entirely* shared code. The base class was just an arbitrary
division between code in one class template and a separate class
template. It didn't add anything and forced lots of indirection through
"derived_this" for no real gain.
We can always factor a base CRTP class out with common code if there is
ever some *other* analysis manager that wants to share a subset of
logic. But for now, folding things into the primary template is
a non-trivial simplification with no down sides I see. It shortens the
code considerably, removes an unhelpful abstraction, and will make
subsequent patches *dramatically* less complex which enhance the
analysis manager infrastructure to effectively cope with invalidation.
llvm-svn: 279221
its own invalidate method.
Previously, the technique would assume that if a result didn't have an
invalidate method that didn't exactly match the expected signature it
didn't have one at all. This is in fact not the case. And we had
analyses with incorrect signatures for the invalidate method in the
tree that would be erroneously invalidated in certain cases! Yikes.
Moreover a result might legitimately want to have multiple overloads for
the invalidate method, and if one changes or a new one is needed we
again really want a compiler error. For example in the tree we had not
added the overload for a *function* IR unit to the invalidate routine
for TLI. Doh.
So a new techique for the SFINAE detection here: if the result has *any*
member spelled "invalidate" we turn off the synthesis of a default
version. We don't care if it is a member function or a member variable
or how many overloads there are. Once a result has something by that
name it must provide suitable overloads for the contexts in which it is
used. This seems much more resilient and durable.
Huge props to Richard Smith who helped me figure out how on earth we
could even do this in C++. It took quite some doing. The technique is
remarkably clean however, and merely requires that the analysis results
are not *final* classes. I think that's a requirement we can live with
even if it is a bit odd.
I've fixed the two bad in-tree analysis results. And this will make my
next change which changes the API for invalidate much easier to
validate as correct.
llvm-svn: 279217
directly produce the index as the value type result.
This requires making the index movable which is straightforward. It
greatly simplifies things by allowing us to completely avoid the builder
API and the layers of abstraction inherent there. Instead both pass
managers can directly construct these when run by value. They still
won't be constructed truly eagerly thanks to the optional in the legacy
PM. The code that directly builds the index can also just share a direct
function.
A notable change here is that the result type of the analysis for the
new PM is no longer a reference type. This was really problematic when
making changes to how we handle result types to make our interface
requirements *much* more strict and precise. But I think this is an
overall improvement.
Differential Revision: https://reviews.llvm.org/D23701
llvm-svn: 279216
Without the synthesized reference to a symbol in the xray_instr_map,
linker section garbage collection will helpfully remove the whole
xray_instr_map section from the final executable (or archive). This will
cause the runtime to not be able to identify the sleds and hot-patch the
calls/jumps into the runtime trampolines.
This change adds a reference from the text section at the end of the
function to keep around the associated xray_instr_map section as well.
We also make sure that we catch this reference in the test.
Reviewers: chandlerc, echristo, majnemer, mehdi_amini
Subscribers: mehdi_amini, llvm-commits, dberris
Differential Revision: https://reviews.llvm.org/D23398
llvm-svn: 279204
The ppc64 multistage bot fails on this.
This reverts commit r279124.
Also Revert "CodeGen: Add/Factor out LiveRegUnits class; NFCI" because it depends on the previous change
This reverts commit r279171.
llvm-svn: 279199
This is a little class template that just builds an inheritance chain of
empty classes. Despite how simple this is, it can be used to really
nicely create ranked overload sets. I've added a unittest as much to
document this as test it. You can pass an object of this type as an
argument to a function overload set an it will call the first viable and
enabled candidate at or below the rank of the object.
I'm planning to use this in a subsequent commit to more clearly rank
overload candidates used for SFINAE. All credit for this technique and
both lines of code here to Richard Smith who was helping me rewrite the
SFINAE check in question to much more effectively capture the intended
set of checks.
llvm-svn: 279197
Patch by William Dillon. Thanks William!
This patch adds support for the R_ARM_REL32 and R_ARM_GOT_PREL ELF ARM
relocations to RuntimeDyld, which should allow JITing of code that
produces these relocations.
No test case: Unfortunately RuntimeDyldELF's GOT building mechanism (which
uses a separate section for GOT entries) isn't compatible with
RuntimeDyldChecker. The correct fix for this is to fix RuntimeDyldELF's GOT
support (it's fundamentally broken at the moment: separate sections aren't
guaranteed to be in range of a GOT entry load), but that's a non-trivial job.
llvm-svn: 279182
Summary: Reduce store size to avoid leading and trailing zeros.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23648
llvm-svn: 279178
The structs BarrierOp, PrefetchOp, PSBHintOp are in AArch64AsmParser.cpp
(inside anonymous namespace). This diff changes the order of fields and
removes the excessive padding (8 bytes).
Patch by Alexander Shaposhnikov!
llvm-svn: 279173
This is a set of register units intended to track register liveness, it
is similar in spirit to LivePhysRegs.
You can also think of this as the liveness tracking parts of the
RegisterScavenger factored out into an own class.
This was proposed in http://llvm.org/PR27609
Differential Revision: http://reviews.llvm.org/D21916
llvm-svn: 279171
The following function currently relies on tail-merging for if
conversion to succeed. The common tail of cond_true and cond_false is
extracted, and this then forms a diamond pattern that can be
successfully if converted.
If this block does not get extracted, either because tail-merging is
disabled or the threshold is higher, we should still recognize this
pattern and if-convert it.
Fixed a regression in the original commit. Need to un-reverse branches after
reversing them, or other conversions go awry.
Regression on self-hosting bots with no obvious explanation. Tidied up range
handling to be more obviously correct, but there was no smoking gun.
define i32 @t2(i32 %a, i32 %b) nounwind {
entry:
%tmp1434 = icmp eq i32 %a, %b ; <i1> [#uses=1]
br i1 %tmp1434, label %bb17, label %bb.outer
bb.outer: ; preds = %cond_false, %entry
%b_addr.021.0.ph = phi i32 [ %b, %entry ], [ %tmp10, %cond_false ]
%a_addr.026.0.ph = phi i32 [ %a, %entry ], [ %a_addr.026.0, %cond_false ]
br label %bb
bb: ; preds = %cond_true, %bb.outer
%indvar = phi i32 [ 0, %bb.outer ], [ %indvar.next, %cond_true ]
%tmp. = sub i32 0, %b_addr.021.0.ph
%tmp.40 = mul i32 %indvar, %tmp.
%a_addr.026.0 = add i32 %tmp.40, %a_addr.026.0.ph
%tmp3 = icmp sgt i32 %a_addr.026.0, %b_addr.021.0.ph
br i1 %tmp3, label %cond_true, label %cond_false
cond_true: ; preds = %bb
%tmp7 = sub i32 %a_addr.026.0, %b_addr.021.0.ph
%tmp1437 = icmp eq i32 %tmp7, %b_addr.021.0.ph
%indvar.next = add i32 %indvar, 1
br i1 %tmp1437, label %bb17, label %bb
cond_false: ; preds = %bb
%tmp10 = sub i32 %b_addr.021.0.ph, %a_addr.026.0
%tmp14 = icmp eq i32 %a_addr.026.0, %tmp10
br i1 %tmp14, label %bb17, label %bb.outer
bb17: ; preds = %cond_false, %cond_true, %entry
%a_addr.026.1 = phi i32 [ %a, %entry ], [ %tmp7, %cond_true ], [ %a_addr.026.0, %cond_false ]
ret i32 %a_addr.026.1
}
Without tail-merging or diamond-tail if conversion:
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ble LBB1_3
@ BB#2: @ %cond_true
@ in Loop: Header=BB1_1 Depth=1
subs r0, r0, r1
cmp r1, r0
it ne
cmpne r0, r1
bgt LBB1_4
LBB1_3: @ %cond_false
@ in Loop: Header=BB1_1 Depth=1
subs r1, r1, r0
cmp r1, r0
bne LBB1_1
LBB1_4: @ %bb17
bx lr
With diamond-tail if conversion, but without tail-merging:
@ BB#0: @ %entry
cmp r0, r1
it eq
bxeq lr
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ite le
suble r1, r1, r0
subgt r0, r0, r1
cmp r1, r0
bne LBB1_1
@ BB#2: @ %bb17
bx lr
llvm-svn: 279168
The cost of predicating a diamond is only the instructions that are not shared
between the two branches. Additionally If a predicate clobbering instruction
occurs in the shared portion of the branches (e.g. a cond move), it may still
be possible to if convert the sub-cfg. This change handles these two facts by
rescanning the non-shared portion of a diamond sub-cfg to recalculate both the
predication cost and whether both blocks are pred-clobbering.
llvm-svn: 279167
This may affect calculations for thresholds, but is not a significant change
in behavior.
The problem was that an inclusive range must have an additonal flag to showr
that it is empty, because otherwise begin == end implies that the range has one
element, and it may not be possible to move past on either side.
llvm-svn: 279166
Each runtime project has a top-level target that is the name of the runtime (minus the "lib" prefix if applicable). This creates top-level targets mapping to runtime projects.
llvm-svn: 279160
Summary:
Inline asm memory constraints can have the base or index register be assigned
to %r0 right now. Make sure that we assign only ADDR64 registers to the base
and index.
Reviewers: uweigand
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23367
llvm-svn: 279157
The subproject interface being used for runtime libraries expects that llvm-config is passed into the subproject for consumption. We currently do this for every subproject, so we should expect that all LLVM ExternalProjects depend on llvm-config for the time being.
Eventually I'd like to see the sub-projects using LLVMConfig.cmake instead of the llvm-config binary, but that will take time to roll out.
llvm-svn: 279155
Xcode 8 requires toolchain compatibility version 2. This allows us to select the correct compatibility version based on the installed version of Xcode.
llvm-svn: 279152
Clean up the existing code by:
1. Renaming variables
2. Adding local variables
3. Making it vector-safe
This is still guarded by a ConstantInt check, so no functional change is intended.
But this should be ready to go: if we move the ConstantInt check down, all of
these folds should do the right thing for vector types.
llvm-svn: 279150
Summary:
We need to use floating-point compares to ensure that s_cbranch_vcc*
instructions are always generated. With integer compares, future
optimizations could cause s_cbranch_scc* to be generated instead.
Reviewers: arsenm, nhaehnle
Subscribers: llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23401
llvm-svn: 279148