in the second slice of a Mach-O universal file.
The code in llvm-objdump in in DisassembleMachO() was getting the default
CPU then incorrectly setting into the global variable used for the -mcpu option
if that was not set. This caused a second call to DisassembleMachO() to use
the wrong default CPU when disassembling the next slice in a Mach-O universal
file. And would result in bad disassembly and an error message about an
recognized processor for the target:
% llvm-objdump -d -m -arch all fat.macho-armv7s-arm64
fat.macho-armv7s-arm64 (architecture armv7s):
(__TEXT,__text) section
armv7:
0: 60 47 bx r12
fat.macho-armv7s-arm64 (architecture arm64):
'cortex-a7' is not a recognized processor for this target (ignoring processor)
'cortex-a7' is not a recognized processor for this target (ignoring processor)
(__TEXT,__text) section
___multc3:
0: .long 0x1e620810
rdar://34439149
llvm-svn: 313921
Move logic that allows for Triple deduction from an ObjectFile object
out of llvm-objdump.cpp into a public factory, found in the ObjectFile
class.
This should allow other tools in the future to use this logic without
reimplementation.
Patch by Mitch Phillips
Differential Revision: https://reviews.llvm.org/D37719
llvm-svn: 313605
This patch makes the `.eh_frame` extension an alias for `.debug_frame`.
Up till now it was only possible to dump the section using objdump, but
not with dwarfdump. Since the two are essentially interchangeable, we
dump whichever of the two is present.
As a workaround, this patch also adds parsing for 3 currently
unimplemented CFA instructions: `DW_CFA_def_cfa_expression`,
`DW_CFA_expression`, and `DW_CFA_val_expression`. Because I lack the
required knowledge, I just parse the fields without actually creating
the instructions.
Finally, this also fixes the typo in the `.debug_frame` section name
which incorrectly contained a trailing `s`.
Differential revision: https://reviews.llvm.org/D37852
llvm-svn: 313530
Summary: Detected by LeakSanitizer for Darwin
Reviewers: enderby, rafael
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37750
llvm-svn: 313146
As discussed on llvm-dev in
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117301.html
this changes the command line interface of llvm-dwarfdump to match the
one used by the dwarfdump utility shipping on macOS. In addition to
being shorter to type this format also has the advantage of allowing
more than one section to be specified at the same time.
In a nutshell, with this change
$ llvm-dwarfdump --debug-dump=info
$ llvm-dwarfdump --debug-dump=apple-objc
becomes
$ dwarfdump --debug-info --apple-objc
Differential Revision: https://reviews.llvm.org/D37714
llvm-svn: 312970
I was surprised to see the code model being passed to MC. After all,
it assembles code, it doesn't create it.
The one place it is used is in the expansion of .cfi directives to
handle .eh_frame being more that 2gb away from the code.
As far as I can tell, gnu assembler doesn't even have an option to
enable this. Compiling a c file with gcc -mcmodel=large produces a
regular looking .eh_frame. This is probably because in practice linker
parse and recreate .eh_frames.
In llvm this is used because the JIT can place the code and .eh_frame
very far apart. Ideally we would fix the jit and delete this
option. This is hard.
Apart from confusion another problem with the current interface is
that most callers pass CodeModel::Default, which is bad since MC has
no way to map it to the target default if it actually needed to.
This patch then replaces the argument with a boolean with a default
value. The vast majority of users don't ever need to look at it. In
fact, only CodeGen and llvm-mc use it and llvm-mc just to enable more
testing.
llvm-svn: 309884
This diff removes the second argument of the method MachOObjectFile::exports.
In all in-tree uses this argument is equal to "this" and
without this argument the interface seems to be cleaner.
Test plan: make check-all
llvm-svn: 309462
lld needs a matching change for this will be my next commit.
Expect it to fail build until that matching commit is picked up by the bots.
Like the changes in r296527 for dyld bind entires and the changes in
r298883 for lazy bind, weak bind and rebase entries the export
entries are the last of the dyld compact info to have error handling added.
This follows the model of iterators that can fail that Lang Hanes
designed when fixing the problem for bad archives r275316 (or r275361).
So that iterating through the exports now terminates if there is an error
and returns an llvm::Error with an error message in all cases for malformed
input.
This change provides the plumbing for the error handling, all the needed
testing of error conditions and test cases for all of the unique error messages.
llvm-svn: 308690
This changes DwarfContext to delegate to DwarfObject instead of having
pure virtual methods.
With this DwarfContextInMemory is replaced with an implementation of
DwarfObject that is local to a .cpp file.
llvm-svn: 308543
Previously such relocations fell into the last case for local
symbols, using the relocation addend as symbol index, leading to
a crash.
Differential Revision: https://reviews.llvm.org/D35239
llvm-svn: 307927
All other code in MachODump.cpp uses the same comparison,
((r_length & 0x1) == 1), for distinguishing between the two,
while the code in llvm-objdump.cpp seemed to be incorrect.
Differential Revision: https://reviews.llvm.org/D35240
llvm-svn: 307882
in the base address.
Without this Mach-O files, like 64-bit executables, don’t have the correct
addresses printed for their exports. As the default is to link at address
0x100000000 not zero.
llvm-svn: 305744
In order to reduce swift binary sizes, Apple is now stripping swift symbols
from the nlist symbol table. llvm-nm currently only looks at the nlist symbol
table and misses symbols that are present in dyld info. This makes it hard to
know the set of symbols for a binary using just llvm-nm. Unless you know to
run llvm-objdump -exports-trie that can output the exported symbols in the dyld
info from the export trie, which does so but in a different format.
Also moving forward the time may come a when a fully linked Mach-O file that
uses dyld will no longer have an nlist symbol table to avoid duplicating the
symbol information.
This change adds three flags to llvm-nm, -add-dyldinfo, -no-dyldinfo, and
-dyldinfo-only.
The first, -add-dyldinfo, has the same effect as when the new bit in the Mach-O
header, MH_NLIST_OUTOFSYNC_WITH_DYLDINFO, appears in a binary. In that it
looks through the dyld info from the export trie and adds symbols to be printed
that are not already in its internal SymbolList variable. The -no-dyldinfo
option turns this behavior off.
The -dyldinfo-only option only looks at the dyld information and recreates the
symbol table from the dyld info from the export trie and binding information.
As if it the Mach-O file had no nlist symbol table.
Also fixed a few bugs with Mach-O N_INDR symbols not correctly printing the
indirect name, or in the same format as the old nm-classic program.
rdar://32021551
llvm-svn: 305733
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This commit introduces a structure that holds all the flags that
control the pretty printing of dwarf output.
Patch by Spyridoula Gravani!
Differential Revision: https://reviews.llvm.org/D33749
llvm-svn: 304446
This may trigger a segfault in llvm-objdump when the line number stored
in debug infromation points beyond the end of file; lines in LineBuffer
are stored in std::vector which is allocated in chunks, so even if the
debug info points beyond the end of the file, this doesn't necessarily
trigger the segfault unless the line number points beyond the allocated
space.
Differential Revision: https://reviews.llvm.org/D32466
llvm-svn: 301347
and test cases for each of the error checks.
To do this more plumbing was needed so that the segment indexes and
segment offsets can be checked. Basically what was done was the SegInfo
from llvm-objdump’s MachODump.cpp was moved into libObject for Mach-O
objects as BindRebaseSegInfo and it is only created when an iterator for
bind or rebase entries are created.
This commit really only adds the error checking and test cases for the
bind table entires and the checking for the lazy bind and weak bind entries
are still to be fully done as well as the rebase entires. Though some of
the plumbing for those are added with this commit. Those other error
checks and test cases will be added in follow on commits.
Note, the two llvm_unreachable() calls should now actually be unreachable
with the error checks in place and would take a logic bug in the error
checking code to be reached if the segment indexes and segment
offsets are used from a checked bind entry. Comments have been added
to the methods that require the arguments to have been checked
prior to calling.
llvm-svn: 298292
other tables. Providing a helpful error message to what the error is and
where the error occurred based on which opcode it was associated with.
There have been handful of bug fixes dealing with bad bind info in
object files, r294021 and r249845, which only put a band aid on the
problem after a bad bind table was created after unpacking from
its compact info. In these cases a bind table should have never been
created and an error should have simply been generated.
This change puts in place the plumbing to allow checking and returning
of an error when the compact info is unpacked. This follows the model
of iterators that can fail that Lang Hanes designed when fixing the problem
for bad archives r275316 (or r275361).
This change uses one of the existing test cases that now causes an
error instead of printing <<bad library ordinal>> after a bad bind table
is created. The error uses the offset into the opcode table as shown with
the macOS dyldinfo(1) tool to indicate where the error is and which
opcode and which parameter is in error.
For example the exiting test case has this lazy binding opcode table:
% dyldinfo -opcodes test/tools/llvm-objdump/Inputs/bad-ordinal.macho-x86_64
…
lazy binding opcodes:
0x0000 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000010)
0x0002 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
In the test case the binary only has one library so setting the library
ordinal to the value of 2 in the BIND_OPCODE_SET_DYLIB_ORDINAL_IMM
opcode at 0x0002 above is an error. This now produces this error message:
% llvm-objdump -lazy-bind bad-ordinal.macho-x86_64
…
llvm-objdump: 'bad-ordinal.macho-x86_64': truncated or malformed object (for BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB bad library ordinal: 2 (max 1) for opcode at: 0x2)
This change provides the plumbing for the error handling and one example
of an error message. Other error checks and test cases will be added in follow
on commits.
llvm-svn: 296527
Disassembly currently begins from addresses obtained from the objects
symbol table. For ELF, add the dynamic symbols to the list if no
static symbols are available so that we can more successfully
disassemble stripped binaries.
Differential Revision: https://reviews.llvm.org/D29632
llvm-svn: 294430
which caused it to not disassemble the bytes a the start of the section if
the section had symbols and the first symbol was not at the start of the
section.
rdar://30143243
llvm-svn: 294212
without symbols that makes calls through a symbol stub which were not
correctly being annotated with “## symbol stub for: _foo”.
Just adds the same parameters for getting the annotations from
DisAsm->getInstruction() and passing them to IP->printInst() from the
code above when boolean variable symbolTableWorked was true.
rdar://29791952
llvm-svn: 293662
To better match the old darwin otool(1) behavior, when llvm-obdump(1) is used
with the -macho option and the input file is not an object file simply print
the file name and this message:
foo: is not an object file
and continue on to process other input files. Also in this case don’t exit
non-zero. This should help in some OSS projects' with autoconf scripts
that are expecting the old darwin otool(1) behavior.
rdar://26828015
llvm-svn: 293547
in llvm-objdump for Mach-O files add the printing of the
x86_thread_state32_t in the same format as
otool-classic(1) on darwin.
To do this the 32-bit x86 general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://30110111
llvm-svn: 292829
Summary:
Add a new load command LC_BUILD_VERSION. It is a generic version of
LC_*_VERSION_MIN load_command used on Apple platforms. Instead of having
a seperate load command for each platform, LC_BUILD_VERSION is recording
platform info as an enum. It also records SDK version, min_os, and tools
that used to build the binary.
rdar://problem/29781291
Reviewers: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29044
llvm-svn: 292824
It describes a region of arbitrary data included in a Mach-O file.
Its initial use is to record extra data in MH_CORE files.
rdar://30001545
rdar://30001731
llvm-svn: 292500
Enable an ELFObjectFile to read the its arm build attributes to
produce a target triple with a specific ARM architecture.
llvm-objdump now uses this functionality to automatically produce
a more accurate target.
Differential Revision: https://reviews.llvm.org/D28769
llvm-svn: 292366
Summary:
Revert [ARM] Fix ubig32_t read in ARMAttributeParser
Now using support functions to read data instead of trying to
perform casts.
===========================================================
Revert [ARM] Enable objdump to construct triple for ARM
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Subscribers: llvm-commits, samparker, aemerson, mgorny
Differential Revision: https://reviews.llvm.org/D28683
llvm-svn: 291911
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Differential Revision: https://reviews.llvm.org/D28281
llvm-svn: 291898
Running a Debug build of objdump -objc-meta-data with a large Mach-O file is
currently unnecessarily slow.
With some local test input, this change reduces the run time from 75-85s down
to 15-20s.
The two changes are:
Assert on pointer equality not array equality
Replace vector<pair<address, symbol>> with DenseMap<address, symbol>
Additionally, use a std::unique_ptr rather than handling the memory manually.
Patch by Dave Lee!
llvm-svn: 291398
The Mach-O command line flag like "-arch armv7m" does not match the
arch name part of its llvm Triple which is "thumbv7m-apple-darwin”.
I think the best way to fix this is to have
llvm::object::MachOObjectFile::getArchTriple() optionally return the
name of the Mach-O arch flag that would be used with -arch that
matches the CPUType and CPUSubType. Then change
llvm::object::MachOUniversalBinary::ObjectForArch::getArchTypeName()
to use that and change it to getArchFlagName() as the type name is
really part of the Triple and the -arch flag name is a Mach-O thing
for a specific Triple with a specific Mcpu value.
rdar://29663637
llvm-svn: 290001
since bpf instruction stream is multiple of 8 change llvm-objdump
to print decimal instruction number instead of hex address, so that
users don't have to do this math manually to match kernel verifier output
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 289569
This is the first part of an effort to add wasm binary
support across all llvm tools.
Patch by Sam Clegg
Differential Revision: https://reviews.llvm.org/D26172
llvm-svn: 288251