whether we try to call an external program to load symbols unconditionally,
or if we check the user's preferences before calling it.
ProcessMachCore now sets CanJIT to false - we can't execute code in a core file.
DynamicLoaderDarwinKernel::OSKextLoadedKextSummary::LoadImageUsingMemoryModule changed
to load the kernel from an on-disk file if at all possible.
Don't load the kext binaries out of memory from the remote systems - their linkedit doesn't
seem to be in a good state and we'll error out down in SymbolVendorMacOSX if we try to use
the in-memory images.
Call Symbols::DownloadObjectAndSymbolFile to get the kext/kernel binary -- the external
program may be able to give us a file path on the local filesystem instead of reading
the binary / dSYM over a network drive every time. Fall back to calling
Target::GetSharedModule() like before if DownloadObjectAndSymbolFile fails.
llvm-svn: 165471
Also added a new option for "log enable" which is "--stack" which will print out a stack backtrace for each log line.
This was used to track down the leaking module issue I fixed last week.
llvm-svn: 165438
enabled after we'd found a few bugs that were caused by shadowed
local variables; the most important issue this turned up was
a common mistake of trying to obtain a mutex lock for the scope
of a code block by doing
Mutex::Locker(m_map_mutex);
This doesn't assign the lock object to a local variable; it is
a temporary that has its dtor called immediately. Instead,
Mutex::Locker locker(m_map_mutex);
does what is intended. For some reason -Wshadow happened to
highlight these as shadowed variables.
I also fixed a few obivous and easy shadowed variable issues
across the code base but there are a couple dozen more that
should be fixed when someone has a free minute.
<rdar://problem/12437585>
llvm-svn: 165269
When attaching to a remote system that does not look like a typical vendor system, and no
executable binary was specified to lldb, check a couple of fixed locations where kernels
running in ASLR mode (slid in memory to a random address) store their load addr when booted
in debug mode, and relocate the symbols or load the kernel wholesale from the host computer
if we can find it.
<rdar://problem/7714201>
llvm-svn: 164888
loaded at a random offset).
To get the kernel's UUID and load address I need to send a kdp
packet so I had to implement the kernel relocation (and attempt to
find the kernel if none was provided to lldb already) in ProcessKDP
-- but this code really properly belongs in DynamicLoaderDarwinKernel.
I also had to add an optional Stream to ConnectRemote so
ProcessKDP::DoConnectRemote can print feedback about the remote kernel's
UUID, load address, and notify the user if we auto-loaded the kernel via
the UUID.
<rdar://problem/7714201>
llvm-svn: 164881
This checkin adds the capability for LLDB to load plugins from external dylibs that can provide new commands
It exports an SBCommand class from the public API layer, and a new SBCommandPluginInterface
There is a minimal load-only plugin manager built into the debugger, which can be accessed via Debugger::LoadPlugin.
Plugins are loaded from two locations at debugger startup (LLDB.framework/Resources/PlugIns and ~/Library/Application Support/LLDB/PlugIns) and more can be (re)loaded via the "plugin load" command
For an example of how to make a plugin, refer to the fooplugin.cpp file in examples/plugins/commands
Caveats:
Currently, the new API objects and features are not exposed via Python.
The new commands can only be "parsed" (i.e. not raw) and get their command line via a char** parameter (we do not expose our internal Args object)
There is no unloading feature, which can potentially lead to leaks if you overwrite the commands by reloading the same or different plugins
There is no API exposed for option parsing, which means you may need to use getopt or roll-your-own
llvm-svn: 164865
We can now do:
Specify a path to a debug symbols file:
(lldb) add-dsym <path-to-dsym>
Go and download the dSYM file for the "libunc.dylib" module in your target:
(lldb) add-dsym --shlib libunc.dylib
Go and download the dSYM given a UUID:
(lldb) add-dsym --uuid <UUID>
Go and download the dSYM file for the current frame:
(lldb) add-dsym --frame
llvm-svn: 164806
top-of-tree. Removed all local patches and llvm.zip.
The intent is that fron now on top-of-tree will
always build against LLVM/Clang top-of-tree, and
that problems building will be resolved as they
occur. Stable release branches of LLDB can be
constructed as needed and linked to specific release
branches of LLVM/Clang.
llvm-svn: 164563
not correctly store the contents of Objective-C
classes. This was due to a combination of
factors:
1) Types were only being completed if we were
looking inside them for specific ivars
(using FindExternalVisibleDeclsByName).
We now look the complete type up at every
FindExternalLexicalDecls.
2) Even if the types were completed properly,
ValueObjectConstResult overrode the type
of every ValueObject using the complete type
for its class from the debug information.
Superclasses of complete classes are not
guaranteed to be complete. Although "frame
variable" uses the debug information,
the expression parser does now piece together
complete types at every level (as described
in Bullet 1), so I provided a way for the
expression parser to prevent overriding.
3) Type sizes were being miscomputed by
ClangASTContext. It ignored the ISA pointer
and only counted fields. We now correctly
count the ISA in the size of an object.
<rdar://problem/12315386>
llvm-svn: 164333
We can now read the relevant data structures for
the method list, and use a callback mechanism to
report their details to the AppleObjCTypeVendor,
which constructs appropriate Clang types.
llvm-svn: 164310
populate Clang ObjCInterfaceDecls with their
ivars, methods, and properties. The default
implementation does nothing. I have also made
sure that AppleObjCRuntimeV2 creates
ObjCInterfaceDecls that actually get queried
appropriately.
llvm-svn: 164164
Partial fix for the above radar where we now resolve dsym mach-o files within the dSYM bundle when using "add-dsym" through the platform.
llvm-svn: 163676
information from the Objective-C runtime.
This patch takes the old AppleObjCSymbolVendor and
replaces it with an AppleObjCTypeVendor, which is
much more lightweight. Specifically, the SymbolVendor
needs to pretend that there is a backing symbol file
for the Types it vends, whereas a TypeVendor only
vends bare ClangASTTypes. These ClangASTTypes only
need to exist in an ASTContext.
The ClangASTSource now falls back to the runtime's
TypeVendor (if one exists) if the debug information
doesn't find a complete type for a particular
Objective-C interface. The runtime's TypeVendor
maintains an ASTContext full of types it knows about,
and re-uses the ISA-based type query information used
by the ValueObjects.
Currently, the runtime's TypeVendor doesn't provide
useful answers because we haven't yet implemented a
way to iterate across all ISAs contained in the target
process's runtime. That's the next step.
llvm-svn: 163651
it is unconditionally present now.
ObjectContainerBSDArchive::CreateInstance %z8.8x is not a valid printf arg specifier, %8.8zx would work
for size_t arg but this arg is addr_t. use %8.8llx and cast up to uint64_t.
ObjectFile::FindPlugin ditto.
DynamicRegisterInfo::SetRegisterInfo ifdef this function out if LLDB_DISABLE_PYTHON.
llvm-svn: 163599
Fixed an issue where if we call "Process::Destroy()" and the process is running, if we try to stop it and get "exited" back as the stop reason, we will still deliver the exited event.
llvm-svn: 163591
on, basic inlined stepping works, including step-over of inlined functions. But for some as yet mysterious reason i386 debugging gets an
assert and dies immediately. So for now its off.
llvm-svn: 163044
Added the ability for OptionValueString objects to take flags. The only flag is currently for parsing escape sequences. Not the prompt string can have escape characters translate which will allow colors in the prompt.
Added functions to Args that will parse the escape sequences in a string, and also re-encode the escape sequences for display. This was looted from other parts of LLDB (the Debugger::FormatString() function).
llvm-svn: 163043
Added a fix for incorrect dynamic typing. Before when asking if a C++ class could be dynamic, we would answer yes for incomplete C++ classes. This turned out to have issues where if a class was not virtual, yet had its first ivar be an instance of a virtual class, we would incorrectly say that a class was virtual and we would downcast it to be a pointer to the first ivar. We now ask the class to complete itself prior to answering the question. We need to test the effects on memory of this change prior to submission. It is the safest and best fix, but it does have a potential downside of higher memory consumption.
llvm-svn: 163014
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
- Tweaked a parameter name in SBDebugger.h so my typemap will catch it;
- Added a SBDebugger.Create(bool, callback, baton) to the swig interface;
- Added SBDebugger.SetLoggingCallback to the swig interface;
- Added a callback utility function for log callbacks;
- Guard against Py_None on both callback utility functions;
- Added a FIXME to the SBDebugger API test;
- Added a __del__() stub for SBDebugger.
We need to be able to get both the log callback and baton from an
SBDebugger if we want to protect against memory leaks (or make the user
responsible for holding another reference to the callback).
Additionally, it's impossible to revert from a callback-backed log
mechanism to a file-backed log mechanism.
llvm-svn: 162633
Added code the initialize the register context in the OperatingSystemPython plug-in with the new PythonData classes, and added a test OperatingSystemPython module in lldb/examples/python/operating_system.py that we can use for testing.
llvm-svn: 162530
Previously we put a WatchpointSentry object within StopInfo.cpp to disable-and-then-enable the watchpoint itself
while we are performing the actions associated with the triggered watchpoint, which can cause the user-initiated
watchpoint disabling action to be negated.
Add a test case to verify that a watchpoint can be disabled during the callbacks.
llvm-svn: 162483
Added a new "interpreter" properties to encapsulate any properties for the command interpreter. Right now this contains only "expand-regex-aliases", so you can now enable (disabled by default) the echoing of the command that a regular expression alias expands to:
(lldb) b main
Breakpoint created: 1: name = 'main', locations = 1
Note that the expanded regular expression command wasn't shown by default. You can enable it if you want to:
(lldb) settings set interpreter.expand-regex-aliases true
(lldb) b main
breakpoint set --name 'main'
Breakpoint created: 1: name = 'main', locations = 1
Also enabled auto completion for enumeration option values (OptionValueEnumeration) and for boolean option values (OptionValueBoolean).
Fixed auto completion for settings names when nothing has been type (it should show all settings).
llvm-svn: 162418
particularly in the SBThread & SBFrame interfaces. Instead of filling the whole context & then getting
the API mutex, we now get only the target, acquire the API mutex from it, then fill out the rest of the
context. This removes a race condition where you get a ThreadSP, then wait on the API mutex while another
command Destroy's the Thread you've just gotten.
Also fixed the ExecutionContextRef::Get*SP calls so they don't return invalid objects.
Also fixed the ExecutionContext::Has*Scope calls so they don't claim to have a scope if the object representing
that scope has been destroyed.
Also fixed a think-o in Thread::IsValid which was causing it to return the opposite of the desired value.
<rdar://problem/11995490>
llvm-svn: 162401
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
when you want to find the caller's saved pc, you look up the return address
register and use that. On arm, for instance, this would be the contents of
the link register (lr).
If the eh_frame CIE defines an RA, record that fact in the UnwindPlan.
When we're finding a saved register, if it's the pc, lok for the location
of the return address register instead.
<rdar://problem/12062310>
llvm-svn: 162167
tread on the m_embedded_thread_input_reader_sp singleton maintained by the script interpreter.
Furthermore, use two additional slots under the script interpreter to store the PseudoTerminal and
the InputReaderSP pertaining to the embedded python interpreter -- resulted from the
ScriptInterpreterPython::ExecuteInterpreterLoop() call -- to facilitate separation from what is being
used by the PythonInputReaderManager instances.
llvm-svn: 162147
do not take the sanpshot and forget about the stop info. It is possible that the variable expression has gone
out of scope, we'll revise the hit count due to the false alarms.
llvm-svn: 161892
Record the snapshot of our watched value when the watchpoint is set or hit.
And report the old/new values when watchpoint is triggered. Add some test scenarios.
llvm-svn: 161785
Fixed an issue that could cause references the shared data for an object file to stay around longer than intended and could cause memory bloat when debugging multiple times.
llvm-svn: 161716
the expression returns nothing. There is now a
setting, "notify-void." When the user enables
that setting, lldb prints (void) if an expression's
result is void. Otherwise, lldb is silent.
<rdar://problem/11225150>
llvm-svn: 161600
require an AddressClass, which is useless at this
point since it already knows the distinction between
32-bit Thumb opcodes and 32-bit ARM opcodes.
llvm-svn: 161382
keep a shared pointer to their disassembler. This
is important for the LLVM-C disassembler because
it needs to lock its parent in order to disassemble
itself.
This means that every interface that returned a
Disassembler* needs to return a DisassemblerSP, so
that the instructions and any external owners share
the same reference count on the object. I changed
all clients to use this shared pointer, which also
plugged a few leaks.
<rdar://problem/12002822>
llvm-svn: 161123
Added new API to lldb::SBTypeMember for bitfields:
bool SBTypeMember::IsBitfield();
uint32_t SBTypeMember::GetBitfieldSizeInBits();
Also added new properties for easy access. Now SBTypeMember objects in python have a "fields" property for all type fields, "bases" for all direct bases, "vbases" for all virtual base classes and "members" for a combo of all three organized by bit offset. They all return a python list() of SBTypeMember objects. Usage:
(lldb) script
>>> t = lldb.target.FindFirstType("my_type")
>>> for field in t.fields:
... print field
>>> for vbase in t.vbases:
... print vbase
>>> for base in t.bases:
... print base
>>> for member in t.members:
... print member
Also added new "is_bitfield" property to the SBTypeMember objects that will return the result of SBTypeMember::IsBitfield(), and "bitfield_bit_size" which will return the result of SBTypeMember::GetBitfieldSizeInBits();
I also fixed "SBTypeMember::GetOffsetInBytes()" to return the correct byte offset.
llvm-svn: 161091
Convert from calling Halt in the lldb Driver.cpp's input reader's sigint handler to sending this AsyncInterrupt so it can be handled in the
event loop.
If you are attaching and get an async interrupt, abort the attach attempt.
Also remember to destroy the process if get interrupted while attaching.
Getting this to work also required handing the eBroadcastBitInterrupt in a few more places in Process WaitForEvent & friends.
<rdar://problem/10792425>
llvm-svn: 160903
calling functions. This is necessary on Mac OS X, since bad things can happen if you set
the registers of a thread that's sitting in a kernel trap.
<rdar://problem/11145013>
llvm-svn: 160756
to returned by expressions, by removing the
__cxa_atexit call that would normally cause these
objects to be destroyed. This also prevents many
errors of the form
Couldn't rewrite one of the arguments of a function call
error: Couldn't materialize struct: Structure hasn't been laid out yet
<rdar://problem/11309402>
llvm-svn: 160596
Improved the error message when we can find a function in the current program by printing the demangled name.
Also added the ability to create lldb_private::Mangled instances with a ConstString when we already have a ConstString for a mangled or demangled name. Also added the ability to call SetValue with a ConstString and also without a boolean to indicate if the string is mangled where we will now auto-detect if the string is mangled.
llvm-svn: 160450