The modules vector was for some reason special which could lead to it
not being of the same size (=num devices). Easiest solution is to treat
it like we do all the other vectors.
An event pool, similar to the stream pool, needs to be kept per device.
For one, events are associated with cuda contexts which means we cannot
destroy the former after the latter. Also, CUDA documentation states
streams and events need to be associated with the same context, which
we did not ensure at all.
Differential Revision: https://reviews.llvm.org/D120142
There are two problems this patch tries to address:
1) We currently free resources in a random order wrt. plugin and
libomptarget destruction. This patch should ensure the CUDA plugin
is less fragile if something during the deinitialization goes wrong.
2) We need to support (hard) pause runtime calls eventually. This patch
allows us to free all associated resources, though we cannot
reinitialize the device yet.
Follow up patch will associate one event pool per device/context.
Differential Revision: https://reviews.llvm.org/D120089
`LIBOMPTARGET_LLVM_INCLUDE_DIRS` is currently checked and included for
multiple times redundantly. This patch is simply a clean up.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D121055
Libomptarget uses some shared variables to track certain internal stated
in the runtime. This causes problems when we have code that contains no
OpenMP kernels. These variables are normally initialized upon kernel
entry, but if there are no kernels we will see no initialization.
Currently we load the runtime into each source file when not running in
LTO mode, so these variables will be erroneously considered undefined or
dead and removed, causing miscompiles. This patch temporarily works
around the most obvious case, but others still exhibit this problem. We
will need to fix this more soundly later.
Fixes#54208.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D121007
When using asynchronous plugin calls, shadow pointer restore could happen before the D2H copy for the entire struct has completed, effectively leaving a device pointer in a host struct.
This patch fixes the problem by delaying restore's to after a synchronization happens (target regions) and by calling early synchronization (target update).
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119968
The runtime uses thread state values to indicate when we use an ICV or
are in nested parallelism. This is done for OpenMP correctness, but it
not needed in the majority of cases. The new flag added is
`-fopenmp-assume-no-thread-state`.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D120106
`bug49334.cpp` has one issue that causes flaky result reported in #53730.
The root cause is `BlockedC` is never initialized but in `BlockMatMul_TargetNowait`
it is directly read and written (via `+=`). Fixes#53730.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D119988
The `IsSPMD` global can only be read by threads other than the main
thread *after* initialization is complete. To allow usage of
`mapping::getBlockSize` before initialization is done, we can pass the
`IsSPMD` state explicitly. This is similar to other APIs that take
`IsSPMD` explicitly to avoid such a race, e.g.,
`mapping::isInitialThreadInLevel0(IsSPMD)`
Fixes https://github.com/llvm/llvm-project/issues/53857
This patch adds a new target to the OpenMP CPU offloading tests. This
tests the usage of the new driver for CPU offloading. If this all works
then we can move to transition to the new driver as the default.
Depends on D119613
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119736
Currently whenever we compile the device runtime we get the following
'Mapping.cpp:32:32: warning: inline function '_OMP::impl::getGridValue'
is not defined [-Wundefined-inline]' warning. This can be silenced by
removing the constexpr attribute for this function. Doing this doesn't
change the generated bitcode at all but prevents the screen from getting
filled with warnings whenver we build the runtime.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119747
This patch fixes the issue that the for loop in `applyToShadowMapEntries`
is infinite because `Itr` is not incremented in `CB`. Fixes#53727.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119471
`bug49334.cpp` directly uses `!=` to compare two floating point values,
which is almost wrong.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D119485
Currently we have a hard team limit, which is set to 65536. It says no matter whether the device can support more teams, or users set more teams, as long as it is larger than that hard limit, the final number to launch the kernel will always be that hard limit. It is way less than the actual hardware limit. For example, my workstation has GTX2080, and the hardware limit of grid size is 2147483647, which is exactly the largest number a `int32_t` can represent. There is no limitation mentioned in the spec. This patch simply removes it.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119313
This patch refines the logic to determine grid size as previous method
can escape the check of whether `CudaBlocksPerGrid` could be greater than the actual
hardware limit.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119311
The 'bug49779.cpp' test has been failing recently. This is because the
runtime is sufficiently complex when using nested parallelism without
optimizations that the CUDA tools cannot statically determine the stack
size. Because of this the kernel can exceed the thread stack size and
crash. Work around this using the 'LIBOMPTARGET_STACK_SIZE' environment
variable and add an FAQ entry for this situation.
Fixes#53670
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D119357
This patch manually adds the runtime include files to the list of
dependencies when we build the bitcode runtime library. Previously if
only the header was changed we would not recompile the source files.
The solution used here isn't optimal because every source file not has a
dependency on each header file regardless of if it was actually used by
that file.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D119254
This patch enables running the new driver tests for AMDGPU. Previously
this was disabled because some tests failed. This was only because the
new driver tests hadn't been listed as unsupported or expected to fail.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D119240
This patch replaces the ValueRAII pointer with a default 'nullptr'
value. Previously this was initialized as a reference to an existing
variable. The use of this variable caused overhead as the compiler could
not look through the uses and determine that it was unused if 'Active'
was not set. Because of this accesses to the variable would be left in
the runtime once compiled.
Fixes#53641
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119187
This patch completely removes the old OpenMP device runtime. Previously,
the old runtime had the prefix `libomptarget-new-` and the old runtime
was simply called `libomptarget-`. This patch makes the formerly new
runtime the only runtime available. The entire project has been deleted,
and all references to the `libomptarget-new` runtime has been replaced
with `libomptarget-`.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D118934
Due to num_threads (probably also other reasons) we cannot assume
explicit barriers are always executed by all threads in an aligned
fashion. We can optimize them if that property can be proven but
that is different.
This patch adds a new target to the tests to run using the new driver as
the method for generating offloading code.
Depends on D116541
Differential Revision: https://reviews.llvm.org/D118637
This patch changes the error message to instead mention the
documentation page for the debugging options provided by libomptarget
and the bitcode runtimes. Add some extra information to the documentation to
help users more quickly identify debugging resources.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118626
Reduces the shared memory size used for globalization to 512 bytes from
2048 to reduce the pressure on shared memory. This patch ado adds a
debug mesage to indicate when the shared memory was insufficient.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118625
Openmp executables need to find libomp and libomptarget at runtime.
This currently requires LD_LIBRARY_PATH or the user to specify rpath. Change
that to set the expected location of the openmp libraries in the install tree.
Whether rpath means rpath or runpath is system dependent. The attached test
shows that the Wl,--disable-new-dtags control interacts correctly with this feature.
The implicit rpath field is appended to any user specified ones which is ideal.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118493
Openmp executables need to find libomp and libomptarget at runtime.
This currently requires LD_LIBRARY_PATH or the user to specify rpath. Change
that to set the expected location of the openmp libraries in the install tree.
Whether rpath means rpath or runpath is system dependent. The attached test
shows that the Wl,--disable-new-dtags control interacts correctly with this feature.
The implicit rpath field is appended to any user specified ones which is ideal.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118493
Fully respect LIBOMPTARGET_BUILD_NVPTX_BCLIB. There is no CUDA toolchain dependency. Complement D118268.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118522
If we have a broken assumption we want to print a message to the user.
If the assumption is broken by many threads in many teams this can
become a problem. To avoid it we use a hash that tracks if a broken
assumption has (likely) been printed and avoid printing it again. This
is not fool proof and has some caveats that might cause problems in
the future (see comment) but it should improve the situation
considerably for now.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D112156
IdentTy objects are useful for debugging and profiling so we want to
keep them around in more places, especially those that have a large
impact on performance, e.g., everything related to state.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D112494
This implements the runtime portion of the interop directive.
It expects the frontend and IRBuilder portions to be in place
for proper execution. It currently works only for GPUs
and has several TODOs that should be addressed going forward.
Reviewed By: RaviNarayanaswamy
Differential Revision: https://reviews.llvm.org/D106674
The old runtime is not tested by CI. Disable the build prior to the llvm-14 branch.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118268
This patch changes the visibility for all construct in the new device
RTL to be hidden by default. This is done after the changes introduced
in D117806 changed the visibility from being hidden by default for all
device compilations. This asserts that the visibility for the device
runtime library will be hidden except for the internal environment
variable. This is done to aid optimization and linking of the device
library.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D117807
In the OpenMC app we saw `omp target update` spending an awful lot of
time in the shadow map traversal without ever doing any update there.
There are two cases that allow us to avoid the traversal completely.
The simplest thing is that small updates cannot (reasonably) contain
an attached pointer part. The other case requires to track in the
mapping table if an entry might contain an attached pointer as part.
Given that we have a single location shadow map entries are created,
the latter is actually fairly easy as well.
Differential Revision: https://reviews.llvm.org/D113124
Atomic handling of map clauses was introduced to comply with the OpenMP
standard (see D104418). However, many apps won't need this feature which
can be costly in certain situations. To allow for applications to
opt-out we now introduce the `LIBOMPTARGET_MAP_FORCE_ATOMIC` environment
flag that voids the atomicity guarantee of the standard for map clauses
again, shifting the burden to the user.
This patch also de-duplicates the code that introduces the events used
to enforce atomicity as a cleanup.
Differential Revision: https://reviews.llvm.org/D117627
The OpenMP offloading libraries are built with fixed triples and linked
in during compile time. This would cause un-helpful errors if the user
passed in the wrong expansion of the triple used for the bitcode
library. because we only support these triples for OpenMP offloading we
can normalize them to the full verion used in the bitcode library.
Reviewed By: jdoerfert, JonChesterfield
Differential Revision: https://reviews.llvm.org/D117634
After the changes in D117362 made variables declared inside of a target
declare directive visible outside the plugin, some variables inside the
runtime were given visiblity that conflicted with their address space
type. This caused problems when shared or local memory was made
externally visible. This patch fixes this issue by making these
varialbes static within the module, therefore limiting their visibility
to being internal.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D117526
After the changes in D117362 made variables declared inside of a target
declare directive visible outside the plugin, some variables inside the
runtime were given visiblity that conflicted with their address space
type. This caused problems when shared or local memory was made
externally visible. This patch fixes this issue by making these
varialbes static within the module, therefore limiting their visibility
to being internal.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D117526
This patch adds the `cold` attribute to the keepAlive functions in the
RTL. This dummy function exists to keep certain RTL calls alive without
them being optimized out, but it is never called and can be declared
cold. This also helps some erroneous remarks being given on this
function because it has weak linkage and cannot be made internal.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D117513
This patch adds the `weak` identifier to the openmp device environment
variable. The changes introduced in https://reviews.llvm.org/D117211
result in multiply defined symbols. Because the symbol is potentially
included multiple times for each offloading file we will get symbol
colisions, and because it needs to have external visiblity it should be
weak.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D117231
In function `DeviceTy::getTargetPointer`, `Entry` could be `nullptr` because of
zero length array section. We need to check if it is a valid iterator before
using it.
Reviewed By: ronlieb
Differential Revision: https://reviews.llvm.org/D116716
The async data movement can cause data race if the target supports it.
Details can be found in [1]. This patch tries to fix this problem by attaching
an event to the entry of data mapping table. Here are the details.
For each issued data movement, a new event is generated and returned to `libomptarget`
by calling `createEvent`. The event will be attached to the corresponding mapping table
entry.
For each data mapping lookup, if there is no need for a data movement, the
attached event has to be inserted into the queue to gaurantee that all following
operations in the queue can only be executed if the event is fulfilled.
This design is to avoid synchronization on host side.
Note that we are using CUDA terminolofy here. Similar mechanism is assumped to
be supported by another targets. Even if the target doesn't support it, it can
be easily implemented in the following fall back way:
- `Event` can be any kind of flag that has at least two status, 0 and 1.
- `waitEvent` can directly busy loop if `Event` is still 0.
My local test shows that `bug49334.cpp` can pass.
Reference:
[1] https://bugs.llvm.org/show_bug.cgi?id=49940
Reviewed By: grokos, JonChesterfield, ye-luo
Differential Revision: https://reviews.llvm.org/D104418
In most cases, hidden helper task behave similar as detached tasks. That means,
for example, if we have to wait for detached tasks, we have to do the same thing
for hidden helper tasks as well. This patch adds the missing condition for hidden
helper task accordingly along with detached task.
Reviewed By: AndreyChurbanov
Differential Revision: https://reviews.llvm.org/D107316
This patch makes some minor adjustments to `ResourcePool`:
- Don't initialize the resources if `Size` is 0 which can avoid assertion.
- Add a new interface function `clear` to release all hold resources.
- If initial size is 0, resize to 1 when the first request is encountered.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D116340
This patch changes the default aligntment from 8 to 16, and encodes this
information in the `__kmpc_alloc_shared` runtime call to communicate it
to the HeapToStack pass. The previous alignment of 8 was not sufficient
for the maximum size of primitive types on 64-bit systems, and needs to
be increaesd. This reduces the amount of space availible in the data
sharing stack, so this implementation will need to be improved later to
include the alignment requirements in the allocation call, and use it
properly in the data sharing stack in the runtime.
Depends on D115888
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D115971
Currently CUDA streams are managed by `StreamManagerTy`. It works very well. Now
we have the need that some resources, such as CUDA stream and event, will be
hold by `libomptarget`. It is always good to buffer those resources. What's more
important, given the way that `libomptarget` and plugins are connected, we cannot
make sure whether plugins are still alive when `libomptarget` is destroyed. That
leads to an issue that those resouces hold by `libomptarget` might not be
released correctly. As a result, we need an unified management of all the resources
that can be shared between `libomptarget` and plugins.
`ResourcePoolTy` is designed to manage the type of resource for one device.
It has to work with an allocator which is supposed to provide `create` and
`destroy`. In this way, when the plugin is destroyed, we can make sure that
all resources allocated from native runtime library will be released correctly,
no matter whether `libomptarget` starts its destroy.
Reviewed By: ye-luo
Differential Revision: https://reviews.llvm.org/D111954
I missed the async info parameter in the first version of this API.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115887
This patch extends the AMDGPU plugin for OpenMP target offloading from using a single HSA queue to multiple queues (four in this patch) per device. This enables concurrent threads to concurrently submit kernel launches to the same GPU.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115771
In the OpenMC app we saw `omp target update` spending an awful lot of
time in the shadow map traversal without ever doing any update there.
There are two cases that allow us to avoid the traversal completely.
The simplest thing is that small updates cannot (reasonably) contain
an attached pointer part. The other case requires to track in the
mapping table if an entry might contain an attached pointer as part.
Given that we have a single location shadow map entries are created,
the latter is actually fairly easy as well.
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D113124
and synchronous kernel launch implementations into a single
synchronous version. This patch prepares the plugin for asynchronous
implementation by:
Privatizing actual kernel launch code (valid in both cases) into
an anonymous namespace base function (submitted at D115267)
- Separating the control flow path of asynchronous and synchronous
kernel launch functions** (this diff)
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115273
D113602 broke the custom state machine when a reduction is present, as
revealed by the reproducer this patch adds to the test suite. In that
case, openmp-opts changes the return value to undef in
`__kmpc_get_warp_size` (which the custom state machine calls as of
D113602). Later optimizations then optimize away the custom state
machine code as if all threads are outside the thread block, so the
target region does not execute. D114802 fixed that but didn't add a
reproducer.
This patch also adds a `__OMP_RTL_ATTRS` entry for
`__kmpc_get_warp_size` to OMPKinds.def, which D113602 missed. This
change does not seem to have any impact on the reduction problem.
Reviewed By: JonChesterfield, jdoerfert
Differential Revision: https://reviews.llvm.org/D113824
The problem with the old scheme is that we would need to keep track of
the "next region" and reset the num_threads value after it. The new RT
doesn't do it and an assertion is triggered. The old RT doesn't do it
either, I haven't tested it but I assume a num_threads clause might
impact multiple parallel regions "accidentally". Further, in SPMD mode
num_threads was simply ignored, for some reason beyond me.
In any case, parallel_51 is designed to take the clause value directly,
so let's do that instead.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D113623
Prepare amdgpu plugin for asynchronous implementation. This patch switches to using HSA API for asynchronous memory copy.
Moving away from hsa_memory_copy means that plugin is responsible for locking/unlocking host memory pointers.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115279
Prepare amdgpu plugin for asynchronous implementation. This patch switches to using HSA API for asynchronous memory copy.
Moving away from hsa_memory_copy means that plugin is responsible for locking/unlocking host memory pointers.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115279
At present, amdgpu plugin merges both asynchronous and synchronous kernel launch implementations into a single synchronous version.
This patch prepares the plugin for asynchronous implementation by:
- Privatizing actual kernel launch code (valid in both cases) into an anonymous namespace base function
Actual separation of kernel launch code (async vs sync) is a following patch.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115267
amdgpu plugin depends on libhsa-runtime64 library. Add runpath in case it is not on the LD_LIBRARY_PATH.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115198
Minor fix to the lit.cfg. Currently, nvptx runs the tests twice on the new runtime.
Soon, amdgpu will run them on the new runtime as well as the old.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D115150
These tests tend to hang or crash on hardware that doesn't
support USM. Disabling them helps diagnose other issues. To safely
enable we require a means of testing whether USM is expected to work.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D115144
This was trying to figure out the build path for amdgpu-arch, and
making assumptions about where it is which were not working on my
system. Whether a standalone build or not, we should have a proper
imported target to get the location from.
OpenMP (compiler) does not currently request any implicit kernel
arguments. OpenMP (runtime) allocates and initialises a reasonable guess at
the implicit kernel arguments anyway.
This change makes the plugin check the number of explicit arguments, instead
of all arguments, and puts the pointer to hostcall buffer in both the current
location and at the offset expected when implicit arguments are added to the
metadata by D113538.
This is intended to keep things running while fixing the oversight in the
compiler (in D113538). Once that patch lands, and a following one marks
openmp kernels that use printf such that the backend emits an args element
with the right type (instead of hidden_node), the over-allocation can be
removed and the hardcoded 8*e+3 offset replaced with one read from the
.offset of the corresponding metadata element.
Reviewed By: estewart08
Differential Revision: https://reviews.llvm.org/D114274
A function with no definition was left in the old runtime, causing
linker errors when trying to compile.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D114264
Removes a +x/-x pair on the only store/load of a variable
and deletes some nearby dead code. Also reduces the size of the implicit
struct to reflect the code currently emitted by clang.
Differential Revision: https://reviews.llvm.org/D114270
The RAII class used for debugging RTL entry used a shared variable to
keep track of the current depth. This used a global initializer, which
isn't supported on AMDGPU. This patch removes the initializer and
instead sets it to zero when the state is initialized in the runtime.
Reviewed By: jdoerfert, JonChesterfield
Differential Revision: https://reviews.llvm.org/D113963
Extension of D112504. Lower amdgpu printf to `__llvm_omp_vprintf`
which takes the same const char*, void* arguments as cuda vprintf and also
passes the size of the void* alloca which will be needed by a non-stub
implementation of `__llvm_omp_vprintf` for amdgpu.
This removes the amdgpu link error on any printf in a target region in favour
of silently compiling code that doesn't print anything to stdout.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112680
The existing CGOpenMPRuntimeAMDGCN and CGOpenMPRuntimeNVPTX classes are
just code bloat. By removing them, the codebase gets a bit cleaner.
Reviewed By: jdoerfert, JonChesterfield, tianshilei1992
Differential Revision: https://reviews.llvm.org/D113421
The existing CGOpenMPRuntimeAMDGCN and CGOpenMPRuntimeNVPTX classes are
just code bloat. By removing them, the codebase gets a bit cleaner.
Reviewed By: jdoerfert, JonChesterfield, tianshilei1992
Differential Revision: https://reviews.llvm.org/D113421
Extension of D112504. Lower amdgpu printf to `__llvm_omp_vprintf`
which takes the same const char*, void* arguments as cuda vprintf and also
passes the size of the void* alloca which will be needed by a non-stub
implementation of `__llvm_omp_vprintf` for amdgpu.
This removes the amdgpu link error on any printf in a target region in favour
of silently compiling code that doesn't print anything to stdout.
The exact set of changes to check-openmp probably needs revision before commit
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112680
Minimize the `impl` interface and clean up some uses of mapping
functions.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D112154
Before we had aligned barriers the `__kmpc_barrier_simple_spmd` was
OK to be used in the custom state machine. Now that SPMD barriers are
assumed to be aligned we need to use a "generic" barrier in places
that are not aligned.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D112893
When we pick state 0 to initialize state but thread N is going to be the
"main thread", in generic mode, we would require extra synchronization.
Instead, we should pick the main thread to initialize state in generic
mode and any thread in SPMD mode.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D112874
The synchronization at the end of parallel region cannot make sure all threads
exit the scope. As a result, the assertions right after it might be hit, and
further the `state::assumeInitialState(IsSPMD)` in `__kmpc_target_deinit` may
not hold as well. We either add a synchronization right after the parallel region,
or remove the assertions and assuptions. Here we choose the first one as those
assertions and assumptions can help optimizations.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112861
Summary:
A previous patch changed the check and mistakenly only did `!expr` when
this is a macro expansion and could only apply to the left side of an
expression.
This patch changes the `assert_assume` function used for internal
assumptions in the device runtime to use a more standard formatting for
the assumption message.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112842
A common problem is the device running out of global heap memory and
crashing due to a nullptr dereference when using the data sharing stack.
This explicitly checks that a nullptr was not returned by malloc when
debugging field 1 is enabled.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112005
This patch adds support for using function tracing features to track the
executino of runtime functions in the device runtime library. This is
enabled by first compiling the new runtime with
`-fopenmp-target-debug=3` and running with
`LIBOMPTARGET_DEVICE_RTL_DEBUG=3`. The output only tracks team 0 and
thread 0 so there isn't much output when using a generic region.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112002
Passes same tests as the current deviceRTL. Includes cmake change from D111987.
CI is showing a different set of pass/fails to local, committing this
without the tests enabled by default while debugging that difference.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112227
Passes same tests as the current deviceRTL. Includes cmake change from D111987.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112227
We do not generate _serialized_parallel calls in device mode, no
need for an external API.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D112145
Exiting a data environment will reset all values, it is wrong to adjust
them afterwards.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D112144
We will later use the fact that a barrier is aligned to reason about
thread divergence. For now we introduce the assumption and some more
documentation.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D112153
The OpenMP thread ID is not the hardware thread ID if we have nesting.
We need to ask the runtime properly to ensure correct results.
Note that the loop interface is going to change soon so we do not adjust
it now but simply ignore the extra argument.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D111950
The team size could/should be an ICV but since we know it is either 1 or
a value we can leave it in the team state for now. However, we still
need to determine if the current level is nested before we use it.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D111949
The first thread state in the new GPU runtime doesn't have a previous
one and we should not dereference the nullptr placeholder.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D111946
Essentially moves the foreach over sm integers into a macro and instantiates it for nvptx.
NFC in that the macro is not presently instantiated for amdgpu as the corresponding code doesn't compile yet.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D111987
Implemented by patching python config instead of modifying all
the tests so that -generic and XFAIL work as usual. Expectation is for
this to be reverted once the old runtime is deleted.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D112225
Step towards building the DeviceRTL for amdgpu.
Mostly replaces cuda-specific toolchain finding logic with the
generic logic currently found in the amdgpu deviceRTL cmake. Also
deletes dead code and changes the default to build on systems
without cuda installed, as the library doesn't use cuda and the
amdgpu-only systems generally won't have cuda installed.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D111983
The plugin currently uses a macro to check if this is a debug built
before assigning the debug kind variable to the device environment
struct. This is being deprecated because the new device runtime does not
maintain separate debug builds and should always be availible.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D112083
D110279 introduced a bug to the device runtime. In `__kmpc_parallel_51`, we detect
whether we are already in parallel region by `__kmpc_parallel_level() > __kmpc_is_spmd_exec_mode()`.
It is based on the assumption that:
- In SPMD mode, parallel level is initialized to 1.
- In generic mode, parallel level is initialized to 0.
- `__kmpc_is_spmd_exec_mode` returns `1` for SPMD mode, 0 otherwise.
Because the return value type of `__kmpc_is_spmd_exec_mode` is `int8_t`, there
was an implicit cast from `bool` to `int8_t`. We can make sure it is either 0 or
1 since C++14. In D110279, the return value is the result of an `and` operation,
which is 2 in SPMD mode. This breaks the assumption in `__kmpc_parallel_51`.
Reviewed By: carlo.bertolli, dpalermo
Differential Revision: https://reviews.llvm.org/D111905
This patch adds support for the
`__kmpc_get_hardware_num_threads_in_block` function that returns the
number of threads. This was missing in the new runtime and was used by
the AMDGPU plugin which prevented it from using the new runtime. This
patchs also unified the interface for getting the thread numbers in the
frontend.
Originally authored by jdoerfert.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D111475
Until we hit the first barrier we should not call `mapping::isSPMDMode`
with all threads. Instead, we now have (and use during initialization) a
`mapping::isMainThreadInGenericMode` overload that takes the known
SPMD-mode state and one that queries it.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D111381
This patch adds an external interface to access the dynamic shared
memory buffer in the device runtime. The function introduced is
``llvm_omp_get_dynamic_shared``. This includes a host-side
definition that only returns a null pointer so that it can be used when
host-fallback is enabled without crashing. Support for dynamic shared
memory was also ported to the old device runtime.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D110957
For NVPTX, `printf` can be used just with a function declaration. For AMDGCN, an
function definition is added, but it simply returns.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109728
We need to synchronize the threads *before* we destroy the RAII objects
that hold the old values and not after to avoid threads executing the
parallel region but seeing an inconsistent state.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D111369
Follow on to D110006, related to D110957
Where implementations have diverged this resolves to match the new DeviceRTL
- replaces definitions of this struct in deviceRTL and plugins with include
- changes the dynamic_shared_size field from D110006 to 32 bits
- handles stdint being unavailable in DeviceRTL
- adds a zero initializer for the field to amdgpu
- moves the extern declaration for deviceRTL to target_interface
(omptarget.h is more natural, but doesn't work due to include order
with debug.h)
- Renames the fields everywhere to match the LLVM format used in DeviceRTL
- Makes debug_level uint32_t everywhere (previously sometimes int32_t)
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D111069
The hand-rolled linking logic in elf_common does not account for
the possibility of using LLVM dylib rather than a dozen static
libraries. Since it does not seem to be easily convertible
to add_llvm_library, just hand-roll support for LLVM_LINK_LLVM_DYLIB.
This is necessary to support stand-alone builds against installed LLVM.
Differential Revision: https://reviews.llvm.org/D111038
Fixes 51982. Adds a missing CreatePointerCast and allocates a global in
the correct address space.
Test case derived from https://github.com/ROCm-Developer-Tools/aomp/\
blob/aomp-dev/test/smoke/nest_call_par2/nest_call_par2.c by deleting
parts while checking the assertion failure still occurred.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110556
Use enum for execution mode.
This is partly a port from ROCm and partly a port from D110029. Attempted to
make the same choices as ROCm as far as comments etc go to reduce the merge
conflicts.
There is some cleanup warranted here - in particular I like the cuda patch
factoring out the comparisons into named variables - but I'd like to leave
that for a follow up patch, keeping this one minimal.
Reviewed By: carlo.bertolli
Differential Revision: https://reviews.llvm.org/D110845
Fixes: SWDEV-275232 (With contributions from Ammar Elwazir, Laurent Morichetti, and Tony Tye)
The current code is racy. After the packet is submitted, the GPU will increment the read index. If this wraps around before the memory is read from it'll refer to a signal from an unrelated packet. Change avoids reading from the packet post-submission.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D110679
Fixes 51982. Minor refactor to remove `return x = y` construct.
Test case derived from https://github.com/ROCm-Developer-Tools/aomp/\
blob/aomp-dev/test/smoke/nest_call_par2/nest_call_par2.c by deleting
parts while checking the assertion failure still occurred.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110556
This path defines the newly added `__kmpc_disitrute_static_init`
functions in the device runtime library. These functions are currently
exact copies of the current worksharing method but can be tuned later.
Depends on D110429
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D110430
Use the in-project clang, llvm-link and opt if available and unless
CMake cache variables specify to use a different compiler. This applies
D101265 to the new DeviceRTL's CMakeLists.txt which was copied before
D101265 was applied.
Fixes the openmp-offloading-cuda-runtime builder which was failing
since D110006.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D110251
Store queues in unique_ptr so they are destroyed when the global DeviceInfo is. Currently they leak which raises an assert in debug builds of hsa.
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D109511
This patch fixes a data-race observed when using the new device runtime
library. The Internal control variable for the parallel level is read in
the `__kmpc_parallel_51` function while it could potentially be written
by other threads. This causes data corruption and will cause
nondetermistic behaviour in the runtime. This patch fixes this by adding
an explicit synchronization before the region starts.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110366
This is a follow-up of D110029, which uses bitset to indicate execution mode. This patches makes the changes in the function call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110279
This patch adds support for an RAII struct that will print function
traces when placed inside of a function declaration. Each successive
call will increase the indentation to make it easier to visually
inspect.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110202
The execution mode of a kernel is stored in a global variable, whose value means:
- 0 - SPMD mode
- 1 - indicates generic mode
- 2 - SPMD mode execution with generic mode semantics
We are going to add support for SIMD execution mode. It will be come with another
execution mode, such as SIMD-generic mode. As a result, this value-based indicator
is not flexible.
This patch changes to bitset based solution to encode execution mode. Each
position is:
[0] - generic mode
[1] - SPMD mode
[2] - SIMD mode (will be added later)
In this way, `0x1` is generic mode, `0x2` is SPMD mode, and `0x3` is SPMD mode
execution with generic mode semantics. In the future after we add the support for
SIMD mode, `0b1xx` will be in SIMD mode.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110029
Summary:
The thread ID function was reintroduced in D110195, but could
potentially be removed by the optimizer. Make the function noinline to
preserve the call sites and add it to the externalization RAII so its
definition is not removed by the attributor.
The new device runtime library currently lacks the
`kmpc_get_hardware_thread_id_in_block` function which is currently used
when doing the SPMDzation optimization. This call would be introduced
through the optimization and then cause a linking error because it was
not present. This patch adds support for this runtime call.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D110195
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert, jhuber6
Differential Revision: https://reviews.llvm.org/D102107
This patch adds support for using dynamic shared memory in the new
device runtime. The new function `__kmpc_get_dynamic_shared` will return a
pointer to the buffer of dynamic shared memory. Currently the amount of memory
allocated is set by an environment variable.
In the future this amount will be added to the amount used for the smart stack
which will be configured in a similar way.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D110006
This patch adds fields for the device number and number of devices into
the device environment struct and debugging values.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110004
This patch implements the `__assert_fail` function in the new device
runtime. This allows users and developers to use the standars assert
function inside of the device.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D109886
The defintion of OFFLOAD_SUCCESS and OFFLOAD_FAIL used in plugin APIs and libomptarget public APIs are not consistent.
Create __tgt_target_return_t for libomptarget public APIs.
Differential Revision: https://reviews.llvm.org/D109304
The hsa library must be initialized before any calls into it and
destructed after the last call into it. There have been a number of bugs in
this area related to member variables which would like to use raii to manage
resources acquired from hsa.
This patch moves the init/shutdown of hsa into a class, such that when used as
the first member variable (could be a base), the lifetime of other member
variables are reliably scoped within it. This will allow other classes to use
raii reliably when used as member variables within the global.
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D109512
Given D109057, change test runner to use the libomptarget-x-bc-path
argument instead of the LIBRARY_PATH environment variable to find the device
library.
Also drop the use of LIBRARY_PATH environment variable as it is far
too easy to pull in the device library from an unrelated toolchain by accident
with the current setup. No loss in flexibility to developers as the clang
commandline used here is still available.
Reviewed By: jdoerfert, tianshilei1992
Differential Revision: https://reviews.llvm.org/D109061
Using std::vector<DeviceTy> requires implementing copy constructor and copied assign operator for DeviceTy.
Indeed DeviceTy should never be copied. After changing to std::vector<std::unique_ptr<DeviceTy>>,
All the unsafe copy constructor and copy assign operator implementations can be removed.
Compilers mark them deleted due to mutex or underlying objects and this is the desired behavior.
Differential Revision: https://reviews.llvm.org/D109276
Use the same debug print as the rest of libomptarget plugins with
the same environment control. Also drop the max queue size debugging hook as
I don't believe it is still in use, can bring it back near the rest of the env
handling in rtl.cpp if someone objects.
That makes most of rt.h and all of utils.cpp unused. Clean that up and simplify
control flow in a couple of places.
Behaviour change is that debug prints that used to use the old environment
variable now use the new one and print in slightly different format, and the
removal of the max queue size variable.
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D108784
Use unique_ptr to achieve the effect of mutable.
Remove mutable keyword of DynRefCount and HoldRefCount
Remove std::shared_ptr from UpdateMtx
Reviewed By: tianshilei1992, grokos
Differential Revision: https://reviews.llvm.org/D109007
As started in D107925, this patch replaces the remaining occurrences
of `UNIFIED_SHARED_MEMORY && TgtPtrBegin == HstPtrBegin` in
`omptarget.cpp` with `IsHostPtr`. The former condition is broken in
the rare case that the device and host happen to use the same address
for their mapped allocations. I don't know how to write a test that's
likely to reveal this case.
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D107928
As discussed in D105990, without this patch, `targetDataBegin`
determines whether to transfer data (as opposed to assuming it's in
shared memory) using the condition `!UseUSM || HasCloseModifier`.
However, this condition is broken if use of discrete memory was forced
by `omp_target_associate_ptr`. This patch extends
`unified_shared_memory/associate_ptr.c` to reveal this case, and it
fixes it using `!IsHostPtr` in `DeviceTy::getTargetPointer` to replace
this condition.
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D107927
This patch is based on comments in D105990. It is NFC according to
the following observations:
1. `CopyMember` is computed as `!IsHostPtr && IsLast`.
2. `DelEntry` is true only if `IsLast` is true.
We apply those observations in order:
```
if ((DelEntry || Always || CopyMember) && !IsHostPtr)
if ((DelEntry || Always || IsLast) && !IsHostPtr)
if ((Always || IsLast) && !IsHostPtr)
```
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D107926
As discussed in D105990, without this patch, `targetDataEnd`
determines whether to transfer data or delete a device mapping (as
opposed to assuming it's in shared memory) using two different
conditions, each of which is broken for some cases:
1. `!(UNIFIED_SHARED_MEMORY && TgtPtrBegin == HstPtrBegin)`: The
broken case is rare: the device and host might happen to use the
same address for their mapped allocations. I don't know how to
write a test that's likely to reveal this case, but this patch does
fix it, as discussed below.
2. `!UNIFIED_SHARED_MEMORY || HasCloseModifier`: There are at least
two broken cases:
1. The `close` modifier might have been specified on an `omp
target enter data` but not the corresponding `omp target exit
data`, which thus might falsely assume a mapping is in shared
memory. The test `unified_shared_memory/close_enter_exit.c`
already has a missing deletion as a result, and this patch adds
a check for that. This patch also adds the new test
`close_member.c` to reveal a missing transfer and deletion.
2. Use of discrete memory might have been forced by
`omp_target_associate_ptr`, as in the test
`unified_shared_memory/api.c`. In the current `targetDataEnd`
implementation, this condition turns out not be used for this
case: because the reference count is infinite, a transfer is
possible only with an `always` modifier, and this condition is
never used in that case. To ensure it's never used for that
case in the future, this patch adds the test
`unified_shared_memory/associate_ptr.c`.
Fortunately, `DeviceTy::getTgtPtrBegin` already has a solution: it
reports whether the allocation was found in shared memory via the
variable `IsHostPtr`.
After this patch, `HasCloseModifier` is no longer used in
`targetDataEnd`, and I wonder if the `close` modifier is ever useful
on an `omp target data end`.
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D107925