A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
Now that we have fixups that only fill parts of a byte, it turns
out we have to mask off the bits outside the fixup area when
applying them. Failing to do so caused invalid object code to
be emitted for bprp with a negative 12-bit displacement.
llvm-svn: 288374
This adds assembler support for the instructions provided by the
execution-hint facility (NIAI and BP(R)P). This required adding
support for the new relocation types for 12-bit and 24-bit PC-
relative offsets used by the BP(R)P instructions.
llvm-svn: 288031
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: echristo, rafael
Reviewed By: rafael
Subscribers: rafael, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10243
llvm-svn: 239464
The current SystemZ back-end only supports the local-exec TLS access model.
This patch adds all required MC support for the other TLS models, which
means in particular:
- Support additional relocation types for
Initial-exec model: R_390_TLS_IEENT
Local-dynamic-model: R_390_TLS_LDO32, R_390_TLS_LDO64,
R_390_TLS_LDM32, R_390_TLS_LDM64, R_390_TLS_LDCALL
General-dynamic model: R_390_TLS_GD32, R_390_TLS_GD64, R_390_TLS_GDCALL
- Support assembler syntax to generate additional relocations
for use with __tls_get_offset calls:
:tls_gdcall:
:tls_ldcall:
The patch also adds a new test to verify fixups and relocations,
and removes the (already unused) FK_390_PLT16DBL/FK_390_PLT32DBL
fixup kinds.
llvm-svn: 229652
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
Similar to r191364, but for calls. This patch also removes the shortening
of BRASL to BRAS within a TU. Doing that was a bit controversial internally,
since there's a strong expectation with the z assembler that WYWIWYG.
llvm-svn: 191366
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
llvm-svn: 190290
Before this change, the SystemZ backend would use BRCL for all branches
and only consider shortening them to BRC when generating an object file.
E.g. a branch on equal would use the JGE alias of BRCL in assembly output,
but might be shortened to the JE alias of BRC in ELF output. This was
a useful first step, but it had two problems:
(1) The z assembler isn't traditionally supposed to perform branch shortening
or branch relaxation. We followed this rule by not relaxing branches
in assembler input, but that meant that generating assembly code and
then assembling it would not produce the same result as going directly
to object code; the former would give long branches everywhere, whereas
the latter would use short branches where possible.
(2) Other useful branches, like COMPARE AND BRANCH, do not have long forms.
We would need to do something else before supporting them.
(Although COMPARE AND BRANCH does not change the condition codes,
the plan is to model COMPARE AND BRANCH as a CC-clobbering instruction
during codegen, so that we can safely lower it to a separate compare
and long branch where necessary. This is not a valid transformation
for the assembler proper to make.)
This patch therefore moves branch relaxation to a pre-emit pass.
For now, calls are still shortened from BRASL to BRAS by the assembler,
although this too is not really the traditional behaviour.
The first test takes about 1.5s to run, and there are likely to be
more tests in this vein once further branch types are added. The feeling
on IRC was that 1.5s is a bit much for a single test, so I've restricted
it to SystemZ hosts for now.
The patch exposes (and fixes) some typos in the main CodeGen/SystemZ tests.
A later patch will remove the {{g}}s from that directory.
llvm-svn: 182274
This adds the actual lib/Target/SystemZ target files necessary to
implement the SystemZ target. Note that at this point, the target
cannot yet be built since the configure bits are missing. Those
will be provided shortly by a follow-on patch.
This version of the patch incorporates feedback from reviews by
Chris Lattner and Anton Korobeynikov. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181203