They used to be classes with a virtual `run` function. This was inconvenient because post analysis steps are stored in BufferizationOptions. Because of this design choice, BufferizationOptions were not copyable.
Differential Revision: https://reviews.llvm.org/D119258
Supports whitespace elements: ` ` and `\\n` as well as the "empty" whitespace `` that removes an otherwise printed space.
Depends on D118208
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D118210
Reuse the higher precision F32 approximation for the F16 one (by expanding and
truncating). This is partly RFC as I'm not sure what the expectations are here
(e.g., these are only for F32 and should not be expanded, that reusing
higher-precision ones for lower precision is undesirable due to increased
compute cost and only approximations per exact type is preferred, or this is
appropriate [at least as fallback] but we need to see how to make it more
generic across all the patterns here).
Differential Revision: https://reviews.llvm.org/D118968
Implements optional attribute or type parameters, including support for such parameters in the assembly format `struct` directive. Also implements optional groups.
Depends on D117971
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D118208
For 0-D as well as 1-D vectors, both these patterns should
return a failure as there is no need to collapse the shape
of the source. Currently, only 1-D vectors were handled. This
patch handles the 0-D case as well.
Reviewed By: Benoit, ThomasRaoux
Differential Revision: https://reviews.llvm.org/D119202
There are a few different test passes that check elementwise fusion in
Linalg. Consolidate them to a single pass controlled by different pass
options (in keeping with how `TestLinalgTransforms` exists).
Add a Python method, output_sparse_tensor, to use sparse_tensor.out to write
a sparse tensor value to a file.
Modify the method that evaluates a tensor expression to return a pointer of the
MLIR sparse tensor for the result to delay the extraction of the coordinates and
non-zero values.
Implement the Tensor to_file method to evaluate the tensor assignment and write
the result to a file.
Add unit tests. Modify test golden files to reflect the change that TNS outputs
now have a comment line and two meta data lines.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D118956
The conversion to the new ControlFlow dialect didn't change the
GPUToROCDL pass - this commit fixes this issue.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D119188
Add support for computing an overapproximation of the number of integer points
in a polyhedron. The returned result is actually the number of integer points
one gets by computing the "rational shadow" obtained by projecting out the
local IDs, finding the minimal axis-parallel hyperrectangular approximation
of the shadow, and returning the number of integer points in that. This does
not currently support symbols.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D119228
This makes it applicable to both ArrayAttr and its typed subclasses instead of
only the latter. There is no good reason why ArrayAttr shouldn't be
const-buildable while its typed subclasses are, this was likely just an
omission.
Depends On D119113
Reviewed By: rriddle, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D119114
ODS provides a mechanism for defalut-valued attributes based on a wrapper
TableGen class that is recognized by mlir-tblgen. Such attributes, if not set
on the operaiton, can be construted on-the-fly in their getter given a constant
value. In order for this construction to work, the attribute specificaiton in
ODS must set the constBuilderCall field correctly. This has not been verified,
which could lead to invalid C++ code being generated by mlir-tblgen.
Closes#53588.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D119113
FunctionPass has been deprecated in favor of OperationPass<FuncOp>
for a few weeks, and this commit finished the deprecation with deletion.
The only difference between the two is that FunctionPass filters out function
declarations. When updating references to FunctionPass, ensure that
the pass either can handle declarations or explicitly add in filtering.
See https://llvm.discourse.group/t/functionpass-deprecated-in-favor-of-operationpass-funcop
Differential Revision: https://reviews.llvm.org/D118735
These have generally been replaced by better ODS functionality, and do not
need to be explicitly provided anymore.
Differential Revision: https://reviews.llvm.org/D119065
Currently if an operation wants a C++ implemented parser/printer, it specifies inline
code blocks. This is quite problematic for various reasons, e.g. it requires defining
C++ inside of Tablegen which is discouraged when possible, but mainly because
nearly all usages simply forward to static functions (e.g. `static void parseSomeOp(...)`)
with users devising their own standards for how these are defined.
This commit adds support for a `hasCustomAssemblyFormat` bit field that specifies if
a C++ parser/printer is needed, and when set to 1 declares the parse/print methods for
operations to override. For migration purposes, the existing behavior is untouched. Upstream
usages will be replaced in a followup to keep this patch focused on the new implementation.
Differential Revision: https://reviews.llvm.org/D119054
There are a few different test passes that check elementwise fusion in
Linalg. Consolidate them to a single pass controlled by different pass
options (in keeping with how `TestLinalgTransforms` exists).
Fix the verification function of spirv::ConstantOp to allow nesting
array attributes.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D118939
Add the class MultiAffineFunction which represents functions whose domain is an
IntegerPolyhedron and which produce an output given by a tuple of affine
expressions in the IntegerPolyhedron's ids.
Also add support for piece-wise MultiAffineFunctions, which are defined on a
union of IntegerPolyhedrons, and may have different output affine expressions
on each IntegerPolyhedron. Thus the function is affine on each individual
IntegerPolyhedron piece in the domain.
This is part of a series of patches leading up to parametric integer programming.
Depends on D118778.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D118779
* Implement `FlatAffineConstraints::getConstantBound(EQ)`.
* Inject a simpler constraint for loops that have at most 1 iteration.
* Taking into account constant EQ bounds of FlatAffineConstraint dims/symbols during canonicalization of the resulting affine map in `canonicalizeMinMaxOp`.
Differential Revision: https://reviews.llvm.org/D119153
This is both more efficient and more ergonomic to use, as inverting a
bit vector is trivial while inverting a set is annoying.
Sadly this leaks into a bunch of APIs downstream, so adapt them as well.
This would be NFC, but there is an ordering dependency in MemRefOps's
computeMemRefRankReductionMask. This is now deterministic, previously it
was dependent on SmallDenseSet's unspecified iteration order.
Differential Revision: https://reviews.llvm.org/D119076
This patch makes IntegerPolyhedron and derived classes use of getters to access
IntegerPolyhedron space information (`numIds, numDims, numSymbols`) instead of
directly accessing them.
This patch makes it easier to change the underlying implementation of the way
identifiers are stored, making it easier to extend/modify existing implementation.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D118888
Adapt `tileConsumerAndFuseProducers` to return failure if the generated tile loop nest is empty since all tile sizes are zero. Additionally, fix `LinalgTileAndFuseTensorOpsPattern` to return success if the pattern applied successfully.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D118878