This reverts commit 5583c2f2fb.
The lldb bot failure was a test that was fragile and sensitive to irrelevant
changes in instruction ordering. Re-committing this as the test should have
been skipped for AArch64 now.
Differential Revision: https://reviews.llvm.org/D75555
The new behavior matches GNU objdump. A pair of angle brackets makes tests slightly easier.
`.foo:` is not unique and thus cannot be used in a `CHECK-LABEL:` directive.
Without `-LABEL`, the CHECK line can match the `Disassembly of section`
line and causes the next `CHECK-NEXT:` to fail.
```
Disassembly of section .foo:
0000000000001634 .foo:
```
Bdragon: <> has metalinguistic connotation. it just "feels right"
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D75713
Previously for any copy from a register bigger than the destination:
Copied to a same-sized register in the destination register bank.
Subregister copy of that to the destination.
This fails for copies from 128-bit FPRs to GPRs because the GPR register bank
can't accomodate 128-bit values.
Instead of special-casing such copies to perform the truncation beforehand in
the source register bank, generalize this:
a) Perform a subregister copy straight from source register whenever possible.
This results in shorter MIR and fixes the above problem.
b) Perform a full copy to target bank and then do a subregister copy only if
source bank can't support target's size. E.g. GPR to 8-bit FPR copy.
Patch by Raul Tambre (tambre)!
Differential Revision: https://reviews.llvm.org/D75421
As discussed in the commit thread for rGa253a2a and D73978, we can do more undef folding for FP ops.
The nnan and ninf fast-math-flags specify that if an operand is the disallowed value, the result is
poison, so we can produce an undef result.
But this doesn't work as expected (the undef operand cases remain) because of a Flags propagation
problem in SelectionDAGBuilder.
I've added DAGCombiner calls to enable these for the other cases because we've shown in other
patches that (because of the limited way that SDAG iterates), it is possible to miss simplifications
like this if they are done only at node creation time.
Several potential follow-ups to expand on this patch are possible.
Differential Revision: https://reviews.llvm.org/D75576
This changes the localizer to attempt intra-block localizer of instructions
that have local uses. This is useful because sometimes the entry block itself
has many uses of constant-like instructions, which would benefit from shortening
live ranges. Previously if an inst had no non-local uses, we wouldn't add it to
the list of instructions to attempt further intra-block localization.
This gives a 0.7% geomean code size improvement on CTMark.
Differential Revision: https://reviews.llvm.org/D75555
CFI instructions can only safely be outlined when the outlined call is a tail
call, or when the outlined frame is fixed up.
For the sake of correctness, disable outlining from CFI instructions.
Add machine-outliner-cfi.mir to test this.
Summary:
This patch adds the following LLVM IR intrinsics for SVE:
1. non-temporal gather loads
* @llvm.aarch64.sve.ldnt1.gather
* @llvm.aarch64.sve.ldnt1.gather.uxtw
* @llvm.aarch64.sve.ldnt1.gather.scalar.offset
2. non-temporal scatter stores
* @llvm.aarch64.sve.stnt1.scatter
* @llvm.aarch64.sve.ldnt1.gather.uxtw
* @llvm.aarch64.sve.ldnt1.gather.scalar.offset
These intrinsic are mapped to the corresponding SVE instructions
(example for half-words, zero-extending):
* ldnt1h { z0.s }, p0/z, [z0.s, x0]
* stnt1h { z0.s }, p0/z, [z0.s, x0]
Note that for non-temporal gathers/scatters, the SVE spec defines only
one instruction type: "vector + scalar". For this reason, we swap the
arguments when processing intrinsics that implement the "scalar +
vector" addressing mode:
* @llvm.aarch64.sve.ldnt1.gather
* @llvm.aarch64.sve.ldnt1.gather.uxtw
* @llvm.aarch64.sve.stnt1.scatter
* @llvm.aarch64.sve.ldnt1.gather.uxtw
In other words, all intrinsics for gather-loads and scatter-stores
implemented in this patch are mapped to the same load and store
instruction, respectively.
The sve2_mem_gldnt_vs multiclass (and it's counterpart for scatter
stores) from SVEInstrFormats.td was split into:
* sve2_mem_gldnt_vec_vs_32_ptrs (32bit wide base addresses)
* sve2_mem_gldnt_vec_vs_62_ptrs (64bit wide base addresses)
This is consistent with what we did for
@llvm.aarch64.sve.ld1.scalar.offset and highlights the actual split in
the spec and the implementation.
Reviewed by: sdesmalen
Differential Revision: https://reviews.llvm.org/D74858
We get the simple cases of this via demanded elements and other folds,
but that doesn't work if the values have >1 use, so add a dedicated
match for the pattern.
We already have this transform in IR, but it doesn't help the
motivating x86 tests (based on PR42024) because the shuffles don't
exist until after legalization and other combines have happened.
The AArch64 test shows a minimal IR example of the problem.
Differential Revision: https://reviews.llvm.org/D75348
According to Joseph Myers, a libm maintainer
> They were only ever an ABI (selected by use of -ffinite-math-only or
> options implying it, which resulted in the headers using "asm" to redirect
> calls to some libm functions), not an API. The change means that ABI has
> turned into compat symbols (only available for existing binaries, not for
> anything newly linked, not included in static libm at all, not included in
> shared libm for future glibc ports such as RV32), so, yes, in any case
> where tools generate direct calls to those functions (rather than just
> following the "asm" annotations on function declarations in the headers),
> they need to stop doing so.
As a consequence, we should no longer assume these symbols are available on the
target system.
Still keep the TargetLibraryInfo for constant folding.
Differential Revision: https://reviews.llvm.org/D74712
Summary:
The following intrinsics are added:
* @llvm.aarch64.sve.ldff1.gather
* @llvm.aarch64.sve.ldff1.gather.index
* @llvm.aarch64.sve.ldff1.gather_sxtw
* @llvm.aarch64.sve.ldff1.gather.uxtw
* @llvm.aarch64.sve.ldff1.gather_sxtw.index
* @llvm.aarch64.sve.ldff1.gather.uxtw.index
* @llvm.aarch64.sve.ldff1.gather.scalar.offset
Although this patch is quite substantial, the vast majority of the
implementation is just a 'copy & paste' of the implementation of regular
gather loads, including tests. There's only a handful of new
definitions:
* AArch64ISD nodes defined in AArch64ISelLowering.h (e.g. GLDFF1)
* Seleciton DAG Types in AArch64SVEInstrInfo.td (e.g.
AArch64ldff1_gather)
* intrinsics in IntrinsicsAArch64.td (e.g. aarch64_sve_ldff1_gather)
* Pseudo instructions in SVEInstrFormats.td to workaround the issue of
use-before-def for the FFR register.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D75128
In some cases Clang does not perform merging of instructions AND and TST (aka
ANDS xzr).
Example:
tst x2, x1
and x3, x2, x1
to:
ands x3, x2, x1
This patch add such merging during instruction selection: when AND is replaced
with ANDS instruction in LowerSELECT_CC, all users of AND also should be
changed for using this ANDS instruction
Short discussion on mailing list:
http://llvm.1065342.n5.nabble.com/llvm-dev-ARM-Peephole-optimization-instructions-tst-add-tp133109.html
Patch by Pavel Kosov.
Differential Revision: https://reviews.llvm.org/D71701
Since all types <32b on gpr end up being assigned gpr32 regclasses, we can end
up with PHIs here which try to select between a gpr32 and an fpr16. Ideally RBS
shouldn't be selecting heterogenous regbanks for operands if possible, but we
still need to be able to deal with it here.
To fix this, if we have a gpr-bank operand < 32b in size and at least one other
operand is on the fpr bank, then we add cross-bank copies to homogenize the
operand banks. For simplicity the bank that we choose to settle on is whatever
bank the def operand has. For example:
%endbb:
%dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
=>
%bb2:
...
%in2_copy:gpr(s16) = COPY %in2:fpr(s16)
...
%endbb:
%dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
Differential Revision: https://reviews.llvm.org/D75086
This may inhibit vector narrowing in general, but there's
already an inconsistency in the way that we deal with this
pattern as shown by the test diff.
We may want to add a dedicated function for narrowing fneg.
It's often folded into some other op, so moving it away from
other math ops may cause regressions that we would not see
for normal binops.
See D73978 for more details.
Summary:
Implements the following intrinsics:
- @llvm.aarch64.sve.bdep.x
- @llvm.aarch64.sve.bext.x
- @llvm.aarch64.sve.bgrp.x
- @llvm.aarch64.sve.tbl2
- @llvm.aarch64.sve.tbx
The SelectTableSVE2 function in this patch is used to select the TBL2
intrinsic & ensures that the vector registers allocated are consecutive.
Reviewers: sdesmalen, andwar, dancgr, cameron.mcinally, efriedma, rengolin
Reviewed By: efriedma
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74912
Summary:
Implements the following intrinsics:
* llvm.aarch64.sve.convert.to.svbool
* llvm.aarch64.sve.convert.from.svbool
For converting the ACLE svbool_t type (<n x 16 x i1>) to and from the
other predicate types: <n x 8 x i1>, <n x 4 x i1> and <n x 2 x i1>.
Reviewers: sdesmalen, kmclaughlin, efriedma, dancgr, rengolin
Reviewed By: sdesmalen, efriedma
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74471
This is explicitly guaranteed in ARMARM. And it makes reasoning about
vectors easier: we can assume that if a vector operation is legal, the
corresponding scalar operation is also legal.
Differential Revision: https://reviews.llvm.org/D74993
Summary:
Implements the @llvm.aarch64.sve.dupq.lane intrinsic.
As specified in the ACLE, the behaviour of:
svdupq_lane_u64(data, index)
...is identical to:
svtbl(data, svadd_x(svptrue_b64(),
svand_x(svptrue_b64(), svindex_u64(0, 1), 1),
index * 2))
If the index is in the range [0,3], the operation is equivalent
to a single DUP (.q) instruction.
Reviewers: sdesmalen, c-rhodes, cameron.mcinally, efriedma, dancgr, rengolin
Reviewed By: sdesmalen
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74734
This version fixes a buildbot failure cause by picking the wrong insert
point for XORs. We cannot pick the XOR binary operator as insert point,
as it is not guaranteed that both input operands for the overflow
intrinsic are defined before it.
This reverts the revert commit
c7fc0e5da6.
Add support for DestructiveBinaryComm DestructiveInstType, as well as the lowering code to expand the new Pseudos into the final movprfx+instruction pairs.
Differential Revision: https://reviews.llvm.org/D73711
Summary:
Added register + immediate and register + register addressing modes for the following intrinsics:
1. Masked load and stores:
* Sign and zero extended load and truncated stores.
* No extension or truncation.
2. Masked non-temporal load and store.
Reviewers: andwar, efriedma
Subscribers: cameron.mcinally, sdesmalen, tschuett, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74254
Add +fullfp16 to sve-vector-splat.ll so we can test folding of immediates into moves.
This attribute can go away later when SVE has a full set of fp16 patterns in place.
Differential Revision: https://reviews.llvm.org/D74965
This includes both GEPs where the indexed type is a scalable vector, and
GEPs where the result type is a scalable vector.
Differential Revision: https://reviews.llvm.org/D73602
Similar to what we already do with SimplifyDemandedVectorElts, call SimplifyDemandedBits across all the extracted elements of the source vector, treating it as single use.
There's a minor regression in store-weird-sizes.ll which will be addressed in an upcoming SimplifyDemandedBits patch.