...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
llvm-svn: 189097
The pass emits a call to sqrt that has attribute "read-none". This call will be
converted to an ISD::FSQRT node during DAG construction, which will turn into
a mips native sqrt instruction.
llvm-svn: 183802
It was just a less powerful and more confusing version of
MCCFIInstruction. A side effect is that, since MCCFIInstruction uses
dwarf register numbers, calls to getDwarfRegNum are pushed out, which
should allow further simplifications.
I left the MachineModuleInfo::addFrameMove interface unchanged since
this patch was already fairly big.
llvm-svn: 181680
mips16/mips32 floating point interoperability.
This patch fixes returns from mips16 functions so that if the function
was in fact called by a mips32 hard float routine, then values
that would have been returned in floating point registers are so returned.
Mips16 mode has no floating point instructions so there is no way to
load values into floating point registers.
This is needed when returning float, double, single complex, double complex
in the Mips ABI.
Helper functions in libc for mips16 are available to do this.
For efficiency purposes, these helper functions have a different calling
convention from normal Mips calls.
Registers v0,v1,a0,a1 are used to pass parameters instead of
a0,a1,a2,a3.
This is because v0,v1,a0,a1 are the natural registers used to return
floating point values in soft float. These values can then be moved
to the appropriate floating point registers with no extra cost.
The only register that is modified is ra in this call.
The helper functions make sure that the return values are in the floating
point registers that they would be in if soft float was not in effect
(which it is for mips16, though the soft float is implemented using a mips32
library that uses hard float).
llvm-svn: 181641
Mips32 code as Mips16 unless it can't be compiled as Mips 16. For now this
would happen as long as floating point instructions are not needed.
Probably it would also make sense to compile as mips32 if atomic operations
are needed too. There may be other cases too.
A module pass prescans the IR and adds the mips16 or nomips16 attribute
to functions depending on the functions needs.
Mips 16 mode can result in a 40% code compression by utililizing 16 bit
encoding of many instructions.
The hope is for this to replace the traditional gcc way of dealing with
Mips16 code using floating point which involves essentially using soft float
but with a library implemented using mips32 floating point. This gcc
method also requires creating stubs so that Mips32 code can interact with
these Mips 16 functions that have floating point needs. My conjecture is
that in reality this traditional gcc method would never win over this
new method.
I will be implementing the traditional gcc method also. Some of it is already
done but I needed to do the stubs to finish the work and those required
this mips16/32 mixed mode capability.
I have more ideas for to make this new method much better and I think the old
method will just live in llvm for anyone that needs the backward compatibility
but I don't for what reason that would be needed.
llvm-svn: 179185
and mips16 on a per function basis.
Because this patch is somewhat involved I have provide an overview of the
key pieces of it.
The patch is written so as to not change the behavior of the non mixed
mode. We have tested this a lot but it is something new to switch subtargets
so we don't want any chance of regression in the mainline compiler until
we have more confidence in this.
Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1.
For that reason there are derived versions of the register info, frame info,
instruction info and instruction selection classes.
Now we register three separate passes for instruction selection.
One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then
one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and
MipsSEISelDAGToDAG.cpp).
When the ModuleISel pass runs, it determines if there is a need to switch
subtargets and if so, the owning pointers in MipsTargetMachine are
appropriately changed.
When 16Isel or SEIsel is run, they will return immediately without doing
any work if the current subtarget mode does not apply to them.
In addition, MipsAsmPrinter needs to be reset on a function basis.
The pass BasicTargetTransformInfo is substituted with a null pass since the
pass is immutable and really needs to be a function pass for it to be
used with changing subtargets. This will be fixed in a follow on patch.
llvm-svn: 179118
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
llvm-svn: 166168
No new tests are added.
All tests in ExecutionEngine/MCJIT that have been failing pass after this patch
is applied (when "make check" is done on a mips board).
Patch by Petar Jovanovic.
llvm-svn: 162135
MipsSEFrameLowering.
Implement MipsSEFrameLowering::hasReservedCallFrame. Call frames will not be
reserved if there is a call with a large call frame or there are variable sized
objects on the stack.
llvm-svn: 161090
This is a preliminary step toward having TargetPassConfig be able to
start and stop the compilation at specified passes for unit testing
and debugging. No functionality change.
llvm-svn: 159567
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
llvm-svn: 155902
reserving a physical register ($gp or $28) for that purpose.
This will completely eliminate loads that restore the value of $gp after every
function call, if the register allocator assigns a callee-saved register, or
eliminate unnecessary loads if it assigns a temporary register.
example:
.cpload $25 // set $gp.
...
.cprestore 16 // store $gp to stack slot 16($sp).
...
jalr $25 // function call. clobbers $gp.
lw $gp, 16($sp) // not emitted if callee-saved reg is chosen.
...
lw $2, 4($gp)
...
jalr $25 // function call.
lw $gp, 16($sp) // not emitted if $gp is not live after this instruction.
...
llvm-svn: 151402
Passes prior to instructon selection are now split into separate configurable stages.
Header dependencies are simplified.
The bulk of this diff is simply removal of the silly DisableVerify flags.
Sorry for the target header churn. Attempting to stabilize them.
llvm-svn: 149754
Allows command line overrides to be centralized in LLVMTargetMachine.cpp.
LLVMTargetMachine can intercept common passes and give precedence to command line overrides.
Allows adding "internal" target configuration options without touching TargetOptions.
Encapsulates the PassManager.
Provides a good point to initialize all CodeGen passes so that Pass ID's can be used in APIs.
Allows modifying the target configuration hooks without rebuilding the world.
llvm-svn: 149672
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
and code model. This eliminates the need to pass OptLevel flag all over the
place and makes it possible for any codegen pass to use this information.
llvm-svn: 144788
Stefanovic. I removed the part that actually emits the instructions cause
I want that to get in better shape first and in incremental steps. This
also makes it easier to review the upcoming parts.
llvm-svn: 135678
- Introduce JITDefault code model. This tells targets to set different default
code model for JIT. This eliminates the ugly hack in TargetMachine where
code model is changed after construction.
llvm-svn: 135580
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468