Add some of the missing M and R class Cortex CPUs, namely:
Cortex-M0+ (called Cortex-M0plus for GCC compatibility)
Cortex-M1
SC000
SC300
Cortex-R5
llvm-svn: 229660
1) We should not try to simplify if the sext has multiple uses
2) There is no need to simplify is the source value is already sign-extended.
Patch by Gil Rapaport <gil.rapaport@intel.com>
Differential Revision: http://reviews.llvm.org/D6949
llvm-svn: 229659
code.
While this didn't have the miscompile (it used MatchLeft consistently)
it missed some cases where it could use right shifts. I've added a test
case Craig Topper came up with to exercise the right shift matching.
This code is really identical between the two. I'm going to merge them
next so that we don't keep two copies of all of this logic.
llvm-svn: 229655
The current SystemZ back-end only supports the local-exec TLS access model.
This patch adds all required CodeGen support for the other TLS models, which
means in particular:
- Expand initial-exec TLS accesses by loading TLS offsets from the GOT
using @indntpoff relocations.
- Expand general-dynamic and local-dynamic accesses by generating the
appropriate calls to __tls_get_offset. Note that this routine has
a non-standard ABI and requires loading the GOT pointer into %r12,
so the patch also adds support for the GLOBAL_OFFSET_TABLE ISD node.
- Add a new platform-specific optimization pass to remove redundant
__tls_get_offset calls in the local-dynamic model (modeled after
the corresponding X86 pass).
- Add test cases verifying all access models and optimizations.
llvm-svn: 229654
track state.
I didn't like this in the code review because the pattern tends to be
error prone, but I didn't see a clear way to rewrite it. Turns out that
there were bugs here, I found them when fuzz testing our shuffle
lowering for correctness on x86.
The core of the problem is that we need to consistently test all our
preconditions for the same directionality of shift and the same input
vector. Instead, formulate this as two predicates (one doesn't depend on
the input in any way), pass things like the directionality and input
vector as inputs, and loop over the alternatives.
This fixes a pattern of very rare miscompiles coming out of this code.
Turned up roughly 4 out of every 1 million v8 shuffles in my fuzz
testing. The new code is over half a million test runs with no failures
yet. I've also fuzzed every other function in the lowering code with
over 3.5 million test cases and not discovered any other miscompiles.
llvm-svn: 229642
This patch teaches fast-isel how to select a (V)CVTSI2SSrr for an integer to
float conversion, and how to select a (V)CVTSI2SDrr for an integer to double
conversion.
Added test 'fast-isel-int-float-conversion.ll'.
Differential Revision: http://reviews.llvm.org/D7698
llvm-svn: 229589
The problem in the original patch was not switching back to .text after printing
an eh table.
Original message:
On ELF, put PIC jump tables in a non executable section.
Fixes PR22558.
llvm-svn: 229586
If an EH table is printed in between the function and the jump table we would
fail to switch back to the text section to print the jump table.
llvm-svn: 229580
Change the memory operands in sse12_fp_packed_scalar_logical_alias from scalars to vectors.
That's what the hardware packed logical FP instructions define: 128-bit memory operands.
There are no scalar versions of these instructions...because this is x86.
Generating the wrong code (folding a scalar load into a 128-bit load) is still possible
using the peephole optimization pass and the load folding tables. We won't completely
solve this bug until we either fix the lowering in fabs/fneg/fcopysign and any other
places where scalar FP logic is created or fix the load folding in foldMemoryOperandImpl()
to make sure it isn't changing the size of the load.
Differential Revision: http://reviews.llvm.org/D7474
llvm-svn: 229531
This is a follow-on patch to:
http://reviews.llvm.org/D7093
That patch canonicalized constant splats as build_vectors,
and this patch removes the constant check so we can canonicalize
all splats as build_vectors.
This fixes the 2nd test case in PR22283:
http://llvm.org/bugs/show_bug.cgi?id=22283
The unfortunate code duplication between SelectionDAG and DAGCombiner
is discussed in the earlier patch review. At least this patch is just
removing code...
This improves an existing x86 AVX test and changes codegen in an ARM test.
Differential Revision: http://reviews.llvm.org/D7389
llvm-svn: 229511
Flag -fast-isel-abort is required in order to verify that X86FastISel
never fails to select FPExt (float-to-double) and FPTrunc (double-to-float).
No Functional change intended.
llvm-svn: 229489
- added mask types v8i1 and v16i1 to possible function parameters
- enabled passing 512-bit vectors in standard CC
- added a test for KNL intel_ocl_bi conventions
llvm-svn: 229482
Vector zext tends to get legalized into a vector anyext, represented as a vector shuffle with an undef vector + a bitcast, that gets ANDed with a mask that zeroes the undef elements.
Combine this into an explicit shuffle with a zero vector instead. This allows shuffle lowering to match it as a zext, instead of matching it as an anyext and emitting an explicit AND.
This combine only covers a subset of the cases, but it's a start.
Differential Revision: http://reviews.llvm.org/D7666
llvm-svn: 229480
This allows it to match still more places where previously we would have
to fall back on floating point shuffles or other more complex lowering
strategies.
I'm hoping to replace some of the hand-rolled unpack matching with this
routine is it gets more and more clever.
llvm-svn: 229463
This test was failing on non-x86 hosts because it specified a cpu of x86_64,
but not an architecture. x86_64 is obviously not a valid cpu on all
architectures.
llvm-svn: 229460
Our register allocation has become better recently, it seems, and is now
starting to generate cross-block copies into inflated register classes. These
copies are not transformed into subregister insertions/extractions by the
PPCVSXCopy class, and so need to be handled directly by
PPCInstrInfo::copyPhysReg. The code to do this was *almost* there, but not
quite (it was unnecessarily restricting itself to only the direct
sub/super-register-class case (not copying between, for example, something in
VRRC and the lower-half of VSRC which are super-registers of F8RC).
Triggering this behavior manually is difficult; I'm including two
bugpoint-reduced test cases from the test suite.
llvm-svn: 229457
Patch to explicitly add the SSE MOVQ (rr,mr,rm) instructions to SSEPackedInt domain - prevents a number of costly domain switches.
Differential Revision: http://reviews.llvm.org/D7600
llvm-svn: 229439
This adds a safe interface to the machine independent InputArg struct
for accessing the index of the original (IR-level) argument. When a
non-native return type is lowered, we generate the hidden
machine-level sret argument on-the-fly. Before this fix, we were
representing this argument as OrigArgIndex == 0, which is an outright
lie. In particular this crashed in the AArch64 backend where we
actually try to access the type of the original argument.
Now we use a sentinel value for machine arguments that have no
original argument index. AArch64, ARM, Mips, and PPC now check for this
case before accessing the original argument.
Fixes <rdar://19792160> Null pointer assertion in AArch64TargetLowering
llvm-svn: 229413
to generically lower blends and is particularly nice because it is
available frome SSE2 onward. This removes a lot of the remaining domain
crossing blends in SSE2 code.
I'm hoping to replace some of the "interleaved" lowering hacks with
something closer to this which should be more principled. First, this
needs to learn how to detect and use other interleavings besides that of
the natural type provided. That will be a follow-up patch though.
llvm-svn: 229378
This blend instruction is ... really lame. The register usage is insane.
As a consequence this is probably only *barely* better than 2 pshufbs
followed by a por, and that mostly because it only has to read from
a single memory location.
However, this doesn't fix as much as I kind of expected, so more to go.
Pretty sure that the ordering and delegation of v16i8 is just really,
really bad.
llvm-svn: 229373
advantage of the existence of a reasonable blend instruction.
The 256-bit vector shuffle lowering has leveraged the general technique
of decomposed shuffles and blends for quite some time, but this never
made it back into the 128-bit code, and there are a large number of
patterns where this is substantially better. For example, this removes
almost all domain crossing in vector shuffles that involve some blend
and some permutation with SSE4.1 and later. See the massive reduction
in 'shufps' for integer test cases in this commit.
This isn't perfect yet for a few reasons:
1) The v8i16 shuffle lowering continues to plague me. We don't always
form an unpack-based blend when that would be better. But the wins
pretty drastically outstrip the losses here.
2) The v16i8 shuffle lowering is just a disaster here. I never went and
implemented blend support here for some terrible reason. I'll do
that next probably. I've not updated it for now.
More variations on this technique are coming as well -- we don't
shuffle-into-unpack or shuffle-into-palignr, both of which would also be
profitable.
Note that some test cases grow significantly in the number of
instructions, but I expect to actually be faster. We use
pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are
very likely to pipeline well (two ports on most modern intel chips) and
the blend is a *very* fast instruction. The domain switch penalty will
essentially always be more than a blend instruction, which is the only
increase in tree height.
llvm-svn: 229350
This patch refactors the existing lowerVectorShuffleAsByteShift function to add support for 256-bit vectors on AVX2 targets.
It also fixes a tablegen issue that prevented the lowering of vpslldq/vpsrldq vec256 instructions.
Differential Revision: http://reviews.llvm.org/D7596
llvm-svn: 229311
when that will allow it to lower with a single permute instead of
multiple permutes.
It tries to detect when it will only have to do a single permute in
either case to maximize folding of loads and such.
This cuts a *lot* of the avx2 shuffle permute counts in half. =]
llvm-svn: 229309
directly into blends of the splats.
These patterns show up even very late in the vector shuffle lowering
where we don't have any chance for DAG combining to kick in, and
blending is a tremendously simpler operation to model. By coercing the
shuffle into a blend we can much more easily match and lower shuffles of
splats.
Immediately with this change there are significantly more blends being
matched in the x86 vector shuffle lowering.
llvm-svn: 229308
I was somewhat surprised this pattern really came up, but it does. It
seems better to just directly handle it than try to special case every
place where we end up forming a shuffle that devolves to a shuffle of
a zero vector.
llvm-svn: 229301
subvectors from buildvectors. That doesn't really make any sense and it
breaks all of the down-stream matching of buildvectors to cleverly lower
shuffles.
With this, we now get the shift-based lowering of 256-bit vector
shuffles with AVX1 when we split them into 128-bit vectors. We also do
much better on the zero-extension patterns, although there remains quite
a bit of room for improvement here.
llvm-svn: 229299