into the clients, e.g., the printing code-completion consumer and
c-index-test. Clients may want to re-sort the results anyway.
Provide a libclang function that sorts the results.
3rd try. How embarrassing.
llvm-svn: 112180
comparison with 0. These two pieces of code should give identical results:
rsbs r1, r1, 0
cmp r0, r1
mov r0, #0
it ls
mov r0, #1
and:
cmn r0, r1
mov r0, #0
it ls
mov r0, #1
However, the CMN gives the *opposite* result when r1 is 0. This is because the
carry flag is set in the CMP case but not in the CMN case. In short, the CMP
instruction doesn't perform a truncate of the (logical) NOT of 0 plus the value
of r0 and the carry bit (because the "carry bit" parameter to AddWithCarry is
defined as 1 in this case, the carry flag will always be set when r0 >= 0). The
CMN instruction doesn't perform a NOT of 0 so there is never a "carry" when this
AddWithCarry is performed (because the "carry bit" parameter to AddWithCarry is
defined as 0).
The AddWithCarry in the CMP case seems to be relying upon the identity:
~x + 1 = -x
However when x is 0 and unsigned, this doesn't hold:
x = 0
~x = 0xFFFF FFFF
~x + 1 = 0x1 0000 0000
(-x = 0) != (0x1 0000 0000 = ~x + 1)
Therefore, we should disable *all* versions of CMN, especially when comparing
against zero, until we can limit when the CMN instruction is used (when we know
that the RHS is not 0) or when we have a hardware fix for this.
(See the ARM docs for the "AddWithCarry" pseudo-code.)
This is related to <rdar://problem/7569620>.
llvm-svn: 112176
code stepping. Also we now store the stack frames for the current and previous
stops in the thread in std::auto_ptr objects. When we create a thread stack
frame list we pass the previous frame into it so it can re-use the frames
and maintain will allow for variable changes to be detected. I will implement
the stack frame reuse next.
llvm-svn: 112152
into the clients, e.g., the printing code-completion consumer and
c-index-test. Clients may want to re-sort the results anyway.
Provide a libclang function that sorts the results.
llvm-svn: 112149
I think there are good reasons to change this, but in the interests
of short-term stability, make SmallVector<...,0> reserve non-zero
capacity in its constructors. This means that SmallVector<...,0>
uses more memory than SmallVector<...,1> and should really only be
used (unless/until this workaround is removed) by clients that
care about using SmallVector with an incomplete type.
llvm-svn: 112147
vectors that are the same size. Fix up testcases accordingly and add a new one
to make sure we still error if lax vector conversions are disabled.
Fixes rdar://8328190
llvm-svn: 112122
This works courtesy of the new SmallVector<..., 0> specialization that
doesn't require a complete type. Note that you'll need to pull at least
SmallVector.h from LLVM to compile successfully.
llvm-svn: 112114