I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This moves the isMask and isShiftedMask functions to be class methods. They now use the MathExtras.h function for single word size and leading/trailing zeros/ones or countPopulation for the multiword size. The previous implementation made multiple temorary memory allocations to do the bitwise arithmetic operations to match the MathExtras.h implementation.
Differential Revision: https://reviews.llvm.org/D31565
llvm-svn: 299362
Summary:
Convert all obvious node_begin/node_end and child_begin/child_end
pairs to range based for.
Sending for review in case someone has a good idea how to make
graph_children able to be inferred. It looks like it would require
changing GraphTraits to be two argument or something. I presume
inference does not happen because it would have to check every
GraphTraits in the world to see if the noderef types matched.
Note: This change was 3-staged with clang as well, which uses
Dominators/etc from LLVM.
Reviewers: chandlerc, tstellarAMD, dblaikie, rsmith
Subscribers: arsenm, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D29767
llvm-svn: 294620
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279602
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279564
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279502
There are two things out of the ordinary in this commit. First, I made
a loop obviously "infinite" in HexagonInstrInfo.cpp. After checking if
an instruction was at the beginning of a basic block (in which case,
`break`), the loop decremented and checked the iterator for `nullptr` as
the loop condition. This has never been possible (the prev pointers are
always been circular, so even with the weird ilist/iplist
implementation, this isn't been possible), so I removed the condition.
Second, in HexagonAsmPrinter.cpp there was another case of comparing a
`MachineBasicBlock::instr_iterator` against `MachineBasicBlock::end()`
(which returns `MachineBasicBlock::iterator`). While not incorrect,
it's fragile. I switched this to `::instr_end()`.
All that said, no functionality change intended here.
llvm-svn: 250778