This simplifies error handling as there is now only one place in the
code that needs to consider the possibility that the name is
corrupted. Before we would do it in every access.
llvm-svn: 280937
Previously we used LayoutInputSection class to correctly assign
symbols defined in linker script. This patch removes it and uses
pointer to preceding input section in SymbolAssignment class instead.
Differential revision: https://reviews.llvm.org/D23661
llvm-svn: 280348
This is fix for PR28976.
Problem was that in scanRelocs, we computed relocation offset too early
for case when linkerscript was used. Patch fixes the issue
delaying the calculation.
Differential revision: https://reviews.llvm.org/D23655
llvm-svn: 279264
This section supersedes .reginfo and .MIPS.options sections. But for now
we have to support all three sections for ABI transition period.
llvm-svn: 278482
All other singleton instances are accessible globally.
CommonInputSection shouldn't be an exception.
Differential Revision: https://reviews.llvm.org/D22935
llvm-svn: 277034
Not all relocations from a .eh_frame that point to an executable
section should be ignored. In particular, the relocation finding the
personality function should not.
This is a reduction from trying to bootstrap a static lld on linux.
llvm-svn: 276329
We no longer need it for relocations in .eh_frame.
The only relocations that point to .eh_frame are the ones trying to
find the output .eh_frame.
This actually fixes a bug in the symbol value code. It was not
handling -1 as an indicator for a piece not being included in the
output.
llvm-svn: 276175
We will need to do something like this to support range extension
thunks since that process is iterative.
Doing this also has the advantage that when doing the regular
relocation scan the offset in the output section is known and we can
just store that. This reduces the number of times we have to run
getOffset and I think will allow a more specialized .eh_frame
representation.
By itself this is already a performance win.
firefox
master 7.295045737
patch 7.209466989 0.98826892235
chromium
master 4.531254468
patch 4.509221804 0.995137623774
chromium fast
master 1.836928973
patch 1.823805241 0.992855612714
the gold plugin
master 0.379768791
patch 0.380043405 1.00072310839
clang
master 0.642698284
patch 0.642215663 0.999249070657
llvm-as
master 0.036665467
patch 0.036456225 0.994293213284
the gold plugin fsds
master 0.40395817
patch 0.404384555 1.0010555177
clang fsds
master 0.722045545
patch 0.720946135 0.998477367518
llvm-as fsds
master 0.03292646
patch 0.032759965 0.994943428477
scylla
master 3.427376378
patch 3.368316181 0.98276810292
llvm-svn: 276146
Creating sections on linkerscript side requires some methods
that can be reused if are exported from writer.
Patch implements that change.
Differential revision: http://reviews.llvm.org/D20104
llvm-svn: 275162
The TinyPtrVector of const Thunk<ELFT>* in InputSections.h can cause
build failures on certain compiler/library combinations when Thunk<ELFT>
is not a complete type or is an abstract class. Fixed by making Thunk<ELFT>
non Abstract.
type or is an abstract class
llvm-svn: 274863
Generalise the Mips LA25 Thunk code and implement ARM and Thumb
interworking Thunks.
- Introduce a new module Thunks.cpp to store the Target Specific Thunk
implementations.
- DefinedRegular and Shared have a ThunkData field to record Thunk.
- A Target can have more than one type of Thunk.
- Support PC-relative calls to Thunks.
- Support Thunks to PLT entries.
- Existing Mips LA25 Thunk code integrated.
- Support for ARMv7A interworking Thunks.
Limitations:
- Only one Thunk per SymbolBody, this is sufficient for all currently
implemented Thunks.
- ARM thunks assume presence of V6T2 MOVT and MOVW instructions.
Differential revision: http://reviews.llvm.org/D21891
llvm-svn: 274836
Previously, ch_size was read in host byte order, so if a host and
a target are different in byte order, we would produce a corrupted
output.
llvm-svn: 274729
Patch implements support of zlib style compressed sections.
SHF_COMPRESSED flag is used to recognize that decompression is required.
After that decompression is performed and flag is removed from output.
Differential revision: http://reviews.llvm.org/D20272
llvm-svn: 273661
The patch adds one more partition to the MIPS GOT. This time it is for
TLS related GOT entries. Such entries are located after 'local' and 'global'
ones. We cannot get a final offset for these entries at the time of
creation because we do not know size of 'local' and 'global' partitions.
So we have to adjust the offset later using `getMipsTlsOffset()` method.
All MIPS TLS relocations which need GOT entries operates MIPS style GOT
offset - 'offset from the GOT's beginning' - MipsGPOffset constant. That
is why I add new types of relocation expressions.
One more difference from othe ABIs is that the MIPS ABI does not support
any TLS relocation relaxations. I decided to make a separate function
`handleMipsTlsRelocation` and put MIPS TLS relocation handling code
there. It is similar to `handleTlsRelocation` routine and duplicates its
code. But it allows to make the code cleaner and prevent pollution of
the `handleTlsRelocation` by MIPS 'if' statements.
Differential Revision: http://reviews.llvm.org/D21606
llvm-svn: 273569
Peter Smith found while trying to support thunk creation for ARM that
LLD sometimes creates broken thunks for MIPS. The cause of the bug is
that we assign file offsets to input sections too early. We need to
create all sections and then assign section offsets because appending
thunks changes file offsets for all following sections.
This patch separates the pass to assign file offsets from thunk
creation pass. This effectively reverts r265673.
Differential Revision: http://reviews.llvm.org/D21598
llvm-svn: 273532
There are two motivations for this patch. The first one is a preparation
for support MIPS TLS relocations. It might sound like a joke but for GOT
entries related to TLS relocations MIPS ABI uses almost regular approach
with creation of dynamic relocations for each GOT enty etc. But we need
to separate these 'regular' TLS related entries from MIPS specific local
and global parts of GOT. ABI declare simple solution - all TLS related
entries allocated at the end of GOT after local/global parts. The second
motivation it to support GOT relocations for non-preemptible symbols
with addends. If we have more than one GOT relocations against symbol S
with different addends we need to create GOT entries for each unique
Symbol/Addend pairs.
So we store all MIPS GOT entries in separate containers. For non-preemptible
symbols we have to maintain two data structures. The first one is MipsLocal
vector. Each entry corresponds to the GOT entry from the 'local' part
of the GOT contains the symbol's address plus addend. The second one
is MipsLocalMap. It is a map from Symbol/Addend pair to the GOT index.
Differential Revision: http://reviews.llvm.org/D21297
llvm-svn: 273127
I think it is me who named these variables, but I always find that
they are slightly confusing because align is a verb.
Adding four letters is worth it.
llvm-svn: 272984
This is mostly extracted from http://reviews.llvm.org/D18960.
The general idea for tlsdesc is that the two GD got entries are used
for a function pointer and its argument. The dynamic linker sets
both. In the non-dlopen case the dynamic linker sets the function to
the identity and the argument to the offset in the tls block.
All that the static linker has to do in the non-dlopen case is
relocate the code to point to the got entries and create a dynamic
relocation.
The dlopen case is more complicated, but can be implemented in another patch.
llvm-svn: 271569
Patch implements next relaxation from latest ABI:
"Convert memory operand of test and binop into immediate operand, where binop is one of adc, add, and, cmp, or,
sbb, sub, xor instructions, when position-independent code is disabled."
It is described in System V Application Binary Interface AMD64 Architecture Processor
Supplement Draft Version 0.99.8 (https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf,
B.2 "B.2 Optimize GOTPCRELX Relocations").
Differential revision: http://reviews.llvm.org/D20793
llvm-svn: 271405
MergedInputSection::getOffset is the busiest function in LLD if string
merging is enabled and input files have lots of mergeable sections.
It is usually the case when creating executable with debug info,
so it is pretty common.
The reason why it is slow is because it has to do faily complex
computations. For non-mergeable sections, section contents are
contiguous in output, so in order to compute an output offset,
we only have to add the output section's base address to an input
offset. But for mergeable strings, section contents are split for
merging, so they are not contigous. We've got to do some lookups.
We used to do binary search on the list of section pieces.
It is slow because I think it's hostile to branch prediction.
This patch replaces it with hash table lookup. Seems it's working
pretty well. Below is "perf stat -r10" output when linking clang
with debug info. In this case this patch speeds up about 4%.
Before:
6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% )
238 context-switches # 0.036 K/sec ( +- 6.59% )
0 cpu-migrations # 0.000 K/sec ( +- 50.92% )
1,067,675 page-faults # 0.162 M/sec ( +- 0.15% )
18,369,931,470 cycles # 2.790 GHz ( +- 0.09% )
9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% )
<not supported> stalled-cycles-backend
21,206,747,787 instructions # 1.15 insns per cycle
# 0.45 stalled cycles per insn ( +- 0.04% )
3,817,398,032 branches # 579.786 M/sec ( +- 0.04% )
132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% )
6.579106511 seconds time elapsed ( +- 0.09% )
After:
6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% )
221 context-switches # 0.035 K/sec ( +- 4.11% )
1 cpu-migrations # 0.000 K/sec ( +- 45.21% )
1,280,775 page-faults # 0.203 M/sec ( +- 0.37% )
17,611,539,150 cycles # 2.790 GHz ( +- 0.19% )
10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% )
<not supported> stalled-cycles-backend
18,794,779,900 instructions # 1.07 insns per cycle
# 0.55 stalled cycles per insn ( +- 0.03% )
3,287,450,865 branches # 520.799 M/sec ( +- 0.03% )
72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% )
6.307411828 seconds time elapsed ( +- 0.19% )
Differential Revision: http://reviews.llvm.org/D20645
llvm-svn: 270999
MIPS .reginfo and .MIPS.options sections are consumed by the linker, and
the linker produces a single output section. But it is possible that
input files contain section symbol points to the corresponding input
section. In case of generation a relocatable output we need to write
such symbols to the output file.
Fixes bug 27878.
Differential Revision: http://reviews.llvm.org/D20688
llvm-svn: 270910
System V Application Binary Interface AMD64 Architecture Processor Supplement Draft Version 0.99.8
(https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf, B.2 "B.2 Optimize GOTPCRELX Relocations")
introduces possible relaxations for R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX.
That patch implements the next relaxation:
mov foo@GOTPCREL(%rip), %reg => lea foo(%rip), %reg
and also opens door for implementing all other ones.
Implementation was suggested by Rafael Ávila de Espíndola with few additions and testcases by myself.
Differential revision: http://reviews.llvm.org/D15779
llvm-svn: 270705
Previously, mergeable section's constructors did more than just
setting member variables; it split section contents into small
pieces. It is not always computationally cheap task because if
the section is a mergeable string section, it needs to scan the
entire section to split them by NUL characters.
If a section would be thrown away by GC, that cost ended up
being a waste of time. It is going to be larger problem if the
section is compressed -- the whole time to uncompress it and
split it up is going to be a waste.
Luckily, we can defer section splitting after GC. We just have
to remember which offsets are in use during GC and apply that later.
This patch implements it.
Differential Revision: http://reviews.llvm.org/D20516
llvm-svn: 270455
This patch adds Size member to SectionPiece so that getRangeAndSize
can just return a SectionPiece instead of a std::pair<SectionPiece *, uint_t>.
Also renamed the function.
llvm-svn: 270346
We were using std::pair to represents pieces of splittable section
contents. It hurt readability because "first" and "second" are not
meaningful. This patch give them names.
One more thing is that piecewise liveness information is stored to
the second element of the pair as a special value of output section
offset. It was confusing, so I defiend a new bit, "Live", in the
new struct.
llvm-svn: 270340
This makes it explicit that each R_RELAX_TLS_* is equivalent to some
other expression.
With this I think we are at a sweet spot for how much is done in
Target.cpp. I did experiment with moving *all* the value math out of it.
It has the advantage that we know the final value in target independent
code, but it gets quite verbose.
llvm-svn: 270277
This adds direct support for computing offsets from the thread pointer
for both variants. Of the architectures we support, variant 1 is used
only by aarch64 (but that doesn't seem to be documented anywhere.)
llvm-svn: 270243
New names reflect purpose of corresponding GOT entries better.
Both expression types related to entries allocated in the 'local'
part of MIPS GOT. R_MIPS_GOT_LOCAL_PAGE is for entries contain 'page'
addresses. R_MIPS_GOT_LOCAL is for entries contain 'full' address.
llvm-svn: 269597
We were previously using an output offset of -1 for both GC'd and tail
merged pieces. We need to distinguish these two cases in order to filter
GC'd symbols from the symbol table -- we were previously asserting when we
asked for the VA of a symbol pointing into a dead piece, which would end
up asking the tail merging string table for an offset even though we hadn't
initialized it properly.
This patch fixes the bug by using an offset of -1 to exclusively mean GC'd
pieces, using 0 for tail merges, and distinguishing the tail merge case from
an offset of 0 by asking the output section whether it is tail merge.
Differential Revision: http://reviews.llvm.org/D19953
llvm-svn: 268604
MIPS N64 ABI introduces .MIPS.options section which specifies miscellaneous
options to be applied to an object/shared/executable file. LLVM as well as
modern versions of GNU tools read and write the only type of the options -
ODK_REGINFO. It is exact copy of .reginfo section used by O32 ABI.
llvm-svn: 268485
Relocations against sections with no SHF_ALLOC bit are R_ABS relocations.
Currently we are creating Relocations vector for them, but that is wasteful.
This patch is to skip vector construction and to directly apply relocations
in place.
This patch seems to be pretty effective for large executables with debug info.
r266158 (Rafael's patch to change the way how we apply relocations) caused a
temporary performance degradation for such executables, but this patch makes
it even faster than before.
Time to link clang with debug info (output size is 1070 MB):
before r266158: 15.312 seconds (0%)
r266158: 17.301 seconds (+13.0%)
Head: 16.484 seconds (+7.7%)
w/patch: 13.166 seconds (-14.0%)
Differential Revision: http://reviews.llvm.org/D19645
llvm-svn: 267917
The fix is to handle local symbols referring to SHF_MERGE sections.
Original message:
GC entries of SHF_MERGE sections.
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets
were used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267233
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets were
used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267164
It turns out that this will read data from the section to properly
handle Elf_Rel implicit addends.
Sorry for the noise.
Original messages:
Try to fix Windows lld build.
Move getRelocTarget to ObjectFile.
It doesn't use anything from the InputSection.
llvm-svn: 267163
This requires adding a few more expression types, but is already a small
simplification. Having Writer.cpp know the exact expression will also
allow further simplifications.
llvm-svn: 266604
With this patch we use the first scan over the relocations to remember
the information we found about them: will them be relaxed, will a plt be
used, etc.
With that the actual relocation application becomes much simpler. That
is particularly true for the interfaces in Target.h.
This unfortunately means that we now do two passes over relocations for
non SHF_ALLOC sections. I think this can be solved by factoring out the
code that scans a single relocation. It can then be used both as a scan
that record info and for a dedicated direct relocation of non SHF_ALLOC
sections.
I also think it is possible to reduce the number of enum values by
representing a target with just an OutputSection and an offset (which
can be from the start or end).
This should unblock adding features like relocation optimizations.
llvm-svn: 266158
Our symbol representation was redundant, and some times would get out of
sync. It had an Elf_Sym, but some fields were copied to SymbolBody.
Different parts of the code were checking the bits in SymbolBody and
others were checking Elf_Sym.
There are two general approaches to fix this:
* Copy the required information and don't store and Elf_Sym.
* Don't copy the information and always use the Elf_Smy.
The second way sounds tempting, but has a big problem: we would have to
template SymbolBody. I started doing it, but it requires templeting
*everything* and creates a bit chicken and egg problem at the driver
where we have to find ELFT before we can create an ArchiveFile for
example.
As much as possible I compared the test differences with what gold and
bfd produce to make sure they are still valid. In most cases we are just
adding hidden visibility to a local symbol, which is harmless.
In most tests this is a small speedup. The only slowdown was scylla
(1.006X). The largest speedup was clang with no --build-id, -O3 or
--gc-sections (i.e.: focus on the relocations): 1.019X.
llvm-svn: 265293
Some targets might require creation of thunks. For example, MIPS targets
require stubs to call PIC code from non-PIC one. The patch implements
infrastructure for thunk code creation and provides support for MIPS
LA25 stubs. Any MIPS PIC code function is invoked with its address
in register $t9. So if we have a branch instruction from non-PIC code
to the PIC one we cannot make the jump directly and need to create a small
stub to save the target function address.
See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- In relocation scanning phase we ask target about thunk creation necessity
by calling `TagetInfo::needsThunk` method. The `InputSection` class
maintains list of Symbols requires thunk creation.
- Reassigning offsets performed for each input sections after relocation
scanning complete because position of each section might change due
thunk creation.
- The patch introduces new dedicated value for DefinedSynthetic symbols
DefinedSynthetic::SectionEnd. Synthetic symbol with that value always
points to the end of the corresponding output section. That allows to
escape updating synthetic symbols if output sections sizes changes after
relocation scanning due thunk creation.
- In the `InputSection::writeTo` method we write thunks after corresponding
input section. Each thunk is written by calling `TargetInfo::writeThunk` method.
- The patch supports the only type of thunk code for each target. For now,
it is enough.
Differential Revision: http://reviews.llvm.org/D17934
llvm-svn: 265059
The original comments were separated by new code that is irrelevant to
the comment. This patch moves the comment to the right place and update it.
llvm-svn: 264816
This simplifies a few things
* Read the value as early as possible, instead of passing a pointer to
the location.
* Print the warning for missing pair close to where we find out it is
missing.
* Don't pass the value to relocateOne.
llvm-svn: 264802
We want to make SymbolBody the central place to query symbol information.
This patch also renames canBePreempted to isPreemptible because I feel that
the latter is slightly better (the former is three words and the latter
is two words.)
llvm-svn: 263386
The patch does not reduce the size of the code but makes
InputSectionBase::relocate cleaner a bit.
Differential Revision: http://reviews.llvm.org/D18119
llvm-svn: 263381
which was reverted because included
unrelative changes by mistake.
Original commit message:
[ELF] - Change all messages to lowercase to be consistent.
That is directly opposite to http://reviews.llvm.org/D18045,
which was reverted.
This patch changes all messages to start from lowercase letter if
they were not before.
That is done to be consistent with clang.
Differential revision: http://reviews.llvm.org/D18085
llvm-svn: 263337
That is directly opposite to http://reviews.llvm.org/D18045,
which was reverted.
This patch changes all messages to start from lowercase letter if
they were not before.
That is done to be consistent with clang.
Differential revision: http://reviews.llvm.org/D18085
llvm-svn: 263252
It is really odd that Mips differentiates symbols that are born local
and those that become local because of hidden visibility. I don't know
enough mips to known if this is a bug or not.
llvm-svn: 263228
It was a badly specified hack for when a tls relocation should be
propagated to the dynamic relocation table.
This replaces it with a not as bad hack of saying that a local dynamic
tls relocation is never preempted.
I will try to remove even that second hack in the next patch.
llvm-svn: 262955
Get rid of few accessors in that class, and replace
them with direct fields access.
Differential revision: http://reviews.llvm.org/D17879
llvm-svn: 262796
The rules for when we can relax tls relocations are target independent.
The only things that are target dependent are the relocation values.
llvm-svn: 262748
SymbolBody constructor and friends take isFunc and isTLS boolean arguments.
ELF symbols have already a type so than be easily passed as argument.
If we want to support another type, this scheme is not good enough, that is,
the current code logic would require passing another `bool isObject` around.
Up to two argument, this stretching exercise was a little bit goofy but
still acceptable, but with more types to support, is just too much, IMHO.
Change the code so that the type is passed instead.
Differential Revision: http://reviews.llvm.org/D17871
llvm-svn: 262684
There was a known limitation for -r option:
relocations against local symbols were not supported.
For example rel[a].eh_frame sections contained relocations against sections
and that was not supported for -r before. Patch fixes that.
Differential review: http://reviews.llvm.org/D17813
llvm-svn: 262590
For shared libraries we allow any weak undefined symbol to eventually be
resolved, even if we never see a definition in another .so. This matches
the behavior when handling other undefined symbols in a shared library.
For executables, we require seeing a definition in a .so or resolve it
to zero. This is also similar to how non weak symbols are handled.
llvm-svn: 262017
R_MIPS_GOT16 relocation against local symbol requires index of a local
GOT entry which contains page address corresponds to sum of the symbol
address and addend. The addend in that case is calculated using addends
from the R_MIPS_GOT16 and paired R_MIPS_LO16 relocations.
Differential Revision: http://reviews.llvm.org/D17610
llvm-svn: 261930
This patch implements the same algorithm as LLD/COFF's ICF. I'm
not going to repeat the same description about how it works, so you
want to read the comment in ICF.cpp in this patch if you want to know
the details. This algorithm should be more powerful than the ICF
algorithm implemented in GNU gold. It can even merge mutually-recursive
functions (which is harder than one might think).
ICF is a fairly effective size optimization. Here are some examples.
LLD: 37.14 MB -> 35.80 MB (-3.6%)
Clang: 59.41 MB -> 57.80 MB (-2.7%)
The lacking feature is "safe" version of ICF. This merges all
identical sections. That is not compatible with a C/C++ language
requirement that two distinct functions must have distinct addresses.
But as long as your program do not rely on the pointer equality
(which is in many cases true), your program should work with the
feature. LLD works fine for example.
GNU gold implements so-called "safe ICF" that identifies functions
that are safe to merge by heuristics -- for example, gold thinks
that constructors are safe to merge because there is no way to
take an address of a constructor in C++. We have a different idea
which David Majnemer suggested that we add NOPs at beginning of
merged functions so that two or more pointers can have distinct
values. We can do whichever we want, but this patch does not
include neither.
http://reviews.llvm.org/D17529
llvm-svn: 261912
-r, -relocatable - Generate relocatable output
Currently does not have support for files containing
relocation sections with entries that refer to local
symbols (like rel[a].eh_frame which refer to sections
and not to symbols)
Differential revision: http://reviews.llvm.org/D14382
llvm-svn: 261838
"Discarded" section is a marker for discarded sections, and we do not
use the instance except for checking its identity. In that sense, it
is just another type of a "null" pointer for InputSectionBase. So,
it doesn't have to be a real instance of InputSectionBase class.
In this patch, we no longer instantiate Discarded section but instead
use -1 as a pointer value. This eliminates a global variable which
needed initialization at startup.
llvm-svn: 261761
This is a preparation for ICF. If we merge two sections, we want to
align the merged section at the largest alignment requirement.
That means we want to update the alignment value, which was
impossible before this patch because Header is a const value.
llvm-svn: 261712
The previous names contained "Local" and "Current", but what we
are handling is always local and current, so they were redundant.
TlsIndex comes from "tls_index" struct that Ulrich Drepper is using
in this document to describe this data structure in GOT.
llvm-svn: 259852
Symbol does not need an entry i the 'global' part of GOT if it cannot be
preempted. So canBePreempted fully satisfies us at least for now.
llvm-svn: 259779
Previously, the methods to get symbol addresses were somewhat scattered
in many places. You can use getEntryAddr returns the address of the symbol,
but if you want to get the GOT address for the symbol, you needed to call
Out<ELFT>::Got->getEntryAddr(Sym). This change adds new functions, getVA,
getGotVA, getGotPltVA, and getPltVA to SymbolBody, so that you can use
SymbolBody as the central place to ask about symbols.
http://reviews.llvm.org/D16710
llvm-svn: 259404
This function is a predicate that a given relocation can be relaxed.
The previous name implied that it returns true if a given relocation
has already been optimized away.
llvm-svn: 259128
In many situations, we don't want to exit at the first error even in the
process model. For example, it is better to report all undefined symbols
rather than reporting the first one that the linker picked up randomly.
In order to handle such errors, we don't need to wrap everything with
ErrorOr (thanks for David Blaikie for pointing this out!) Instead, we
can set a flag to record the fact that we found an error and keep it
going until it reaches a reasonable checkpoint.
This idea should be applicable to other places. For example, we can
ignore broken relocations and check for errors after visiting all relocs.
In this patch, I rename error to fatal, and introduce another version of
error which doesn't call exit. That function instead sets HasError to true.
Once HasError becomes true, it stays true, so that we know that there
was an error if it is true.
I think introducing a non-noreturn error reporting function is by itself
a good idea, and it looks to me that this also provides a gradual path
towards lld-as-a-library (or at least embed-lld-to-your-program) without
sacrificing code readability with lots of ErrorOr's.
http://reviews.llvm.org/D16641
llvm-svn: 259069
In InputSection.cpp it was possible to dereference null.
Had to change signature of relocateTlsOptimize to accept pointer instead of reference.
Differential revision: http://reviews.llvm.org/D16466
llvm-svn: 258508
Some MIPS relocation (for now R_MIPS_GOT16) requires creation of GOT
entries for symbol not included in the dynamic symbol table. They are
local symbols and non-local symbols with 'local' visibility. Local GOT
entries occupy continuous block between GOT header and regular GOT
entries.
The patch adds initial support for handling local GOT entries. The main
problem is allocating local GOT entries for local symbols. Such entries
should be initialized by high 16-bit of the symbol value. In ideal world
there should be no duplicated entries with the same values. But at the
moment of the `Writer::scanRelocs` call we do not know a value of the
symbol. In this patch we create new local GOT entry for each relocation
against local symbol, though we can exhaust GOT quickly. That needs to
be optimized later. When we calculate relocation we know a final symbol
value and request local GOT entry index. To do that we maintain map
between addresses and local GOT entry indexes. If we start to calculate
relocations in parallel we will have to serialize access to this map.
Differential Revision: http://reviews.llvm.org/D16324
llvm-svn: 258388
R_X86_64_PLT32 is handled in the same way as R_X86_64_PC32 by
relocateOne(), so this function does not seems to be needed.
Without this code, all tests still pass.
http://reviews.llvm.org/D15971
llvm-svn: 257203
All non-trivial relocation decisions need explanations like this
to help readers understand not only how relocations are handled but
why they are handled these ways. This is a start.
llvm-svn: 257119
MipsReginfoInputSection is basically just a container of Elf_Mips_Reginfo
struct. This patch makes that struct directly accessible from others.
llvm-svn: 256984
The R_MIPS_GPREL16 / R_MIPS_GPREL32 relocations use the following
expressions for calculations:
```
local symbol: S + A + GP0 - GP
global symbol: S + A - GP
GP - Represents the final gp value, i.e. _gp symbol
GP0 - Represents the gp value used to create the relocatable object
```
The GP0 value is taken from the .reginfo data section defined by an object
file. To implement that I keep a reference to `MipsReginfoInputSection`
in the `ObjectFile` class. This reference is used by the
`ObjectFile::getMipsGp0` method to return the GP0 value.
Differential Revision: http://reviews.llvm.org/D15760
llvm-svn: 256416
The file crtbeginT.o has relocations pointing to the start of an empty
.eh_frame that is known to be the first in the link. It does that to
identify the start of the output .eh_frame. Handle this special case.
Differential revision: http://reviews.llvm.org/D15610
llvm-svn: 256414
There are 3 symbol types that a .bc can provide during lto: defined,
undefined, common.
Defined and undefined symbols have already been refactored. I was
working on common and noticed that absolute symbols would become an
oddity: They would be the only symbol type present in a .o but not in
a.bc.
Looking a bit more, other than the special section number they were only
used for special rules for computing values. In that way they are
similar to TLS, and we don't have a DefinedTLS.
This patch deletes it. With it we have a reasonable rule of the thumb
for having a symbol kind: It exists if it has special resolution
semantics.
llvm-svn: 256383
This patch changes sequence of applying relocations, moving tls optimized relocation handling code before code for other locals.
Without that change relocation @GOTTPOFF against local symbol caused runtime error ("unrecognized reloc ...").
That change also should fix other tls optimized relocations, but I did not check them, that's a field for another patch.
R_X86_64_GOTTPOFF relocations against locals can be found when linking against libc.a(malloc.o):
000000000036 000600000016 R_X86_64_GOTTPOFF 0000000000000000 libc_tsd_MALLOC - 4
000000000131 000600000016 R_X86_64_GOTTPOFF 0000000000000000 libc_tsd_MALLOC - 4
Differential revision: http://reviews.llvm.org/D15581
llvm-svn: 256145
MIPS .reginfo section provides information on the registers used by
the code in the object file. Linker should collect this information and
write .reginfo section in the output file. This section contains a union
of used registers masks taken from input .reginfo sections and final
value of the `_gp` symbol.
For details see the "Register Information" section in Chapter 4 in the
following document:
ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
The patch implements .reginfo sections handling with a couple missed
features: a) it does not put output .reginfo section into the separate
REGINFO segment; b) it does not merge `ri_cprmask` masks from input
section. These features will be implemented later.
Differential Revision: http://reviews.llvm.org/D15669
llvm-svn: 256119
@indntpoff is similar to @gotntpoff, but for use in position dependent code. While @gotntpoff resolves to GOT slot address relative to the
start of the GOT in the movl or addl instructions, @indntpoff resolves to the
absolute GOT slot address. ("ELF Handling For Thread-Local Storage", Ulrich Drepper).
Differential revision: http://reviews.llvm.org/D15494
llvm-svn: 255884
The `_gp_disp` is a magic symbol designates offset between start of
function and gp pointer into GOT. Only `R_MIPS_HI16` and `R_MIPS_LO16`
relocations are permitted with `_gp_disp`. The patch adds the `_gp_disp`
as an ignored symbol and adjusts symbol value before call the `relocateOne`
for `R_MIPS_HI16/LO16` relocations.
Differential Revision: http://reviews.llvm.org/D15480
llvm-svn: 255768
R_X86_64_SIZE64/R_X86_64_SIZE32 relocations were introduced in 0.98v of "System V Application Binary Interface x86-64" (http://www.x86-64.org/documentation/abi.pdf).
Calculation for them is Z + A, where:
Z - Represents the size of the symbol whose index resides in the relocation entry.
A - Represents the addend used to compute the value of the relocatable field.
Differential revision: http://reviews.llvm.org/D15335
llvm-svn: 255332
"Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5 x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows how GD can be optimized to IE.
This patch implements the optimization.
Differential revision: http://reviews.llvm.org/D15000
llvm-svn: 254713
Some MIPS relocations including `R_MIPS_HI16/R_MIPS_LO16` use combined
addends. Such addend is calculated using addends of both paired relocations.
Each `R_MIPS_HI16` relocation is paired with the next `R_MIPS_LO16`
relocation. ABI requires to compute such combined addend in case of REL
relocation record format only.
For details see p. 4-17 at
ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
This patch implements lookup of the next paired relocation suing new
`InputSectionBase::findPairedRelocLocation` method. The primary
disadvantage of this approach is that we put MIPS specific logic into
the common code. The next disadvantage is that we lookup `R_MIPS_LO16`
for each `R_MIPS_HI16` relocation, while in fact multiple `R_MIPS_HI16`
might be paired with the single `R_MIPS_LO16`. From the other side
this way allows us to keep `MipsTargetInfo` class stateless and implement
later relocation handling in parallel.
This patch does not support `R_MIPS_HI16/R_MIPS_LO16` relocations against
`_gp_disp` symbol. In that case the relocations use a special formula for
the calculation. That will be implemented later.
Differential Revision: http://reviews.llvm.org/D15112
llvm-svn: 254461
Combination of @tlsgd and @gottpoff at the same time leads to miss of R_X86_64_TPOFF64 dynamic relocation. Patch fixes that.
@tlsgd(%rip) - Allocate two contiguous entries in the GOT to hold a tls index
structure (for passing to tls get addr).
@gottpoff(%rip) - Allocate one GOT entry to hold a variable offset in initial TLS
block (relative to TLS block end, %fs:0).
The same situation can be observed for x86 (probably others too, not sure) with corresponding for that target relocations: @tlsgd, @gotntpoff.
Differential revision: http://reviews.llvm.org/D15105
llvm-svn: 254443
Fix was:
uint32_t getLocalTlsIndexVA() { return getVA() + LocalTlsIndexOff; }
=>
uint32_t getLocalTlsIndexVA() { return Base::getVA() + LocalTlsIndexOff; }
Both works for my MSVS.
Original commit message:
[ELF] - Refactor of tls_index implementation for tls local dynamic model.
Patch contains the next 2 changes:
1) static variable Out<ELFT>::LocalModuleTlsIndexOffset moved to Out<ELFT>::Got. At fact there is no meaning for it to be separated from GOT class because at each place of using it anyways needs to call GOT`s getVA(). Also it is impossible to have that offset and not have GOT.
2) addLocalModuleTlsIndex -> addLocalModelTlsIndex (word "Module" changed to "Model"). Not sure was it a mistype or not but I think that update is closer to Urlich terminology.
Differential revision: http://reviews.llvm.org/D15113
llvm-svn: 254433
It failed buildbot:
http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/builds/3782/steps/build/logs/stdio
Target.cpp
In file included from /home/buildbot/Buildbot/Slave/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/llvm.src/tools/lld/ELF/Target.cpp:20:
/home/buildbot/Buildbot/Slave/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/llvm.src/tools/lld/ELF/OutputSections.h:136:42: error: use of undeclared identifier 'getVA'
uint32_t getLocalTlsIndexVA() { return getVA() + LocalTlsIndexOff; }
llvm-svn: 254432
Patch contains the next 2 changes:
1) static variable Out<ELFT>::LocalModuleTlsIndexOffset moved to Out<ELFT>::Got. At fact there is no meaning for it to be separated from GOT class because at each place of using it anyways needs to call GOT`s getVA(). Also it is impossible to have that offset and not have GOT.
2) addLocalModuleTlsIndex -> addLocalModelTlsIndex (word "Module" changed to "Model"). Not sure was it a mistype or not but I think that update is closer to Urlich terminology.
Differential revision: http://reviews.llvm.org/D15113
llvm-svn: 254428
Implements @tlsld (LD to LE) and @tlsgd (GD to LE) optimizations.
Patch does not implement the GD->IE case for @tlsgd.
Differential revision: http://reviews.llvm.org/D14870
llvm-svn: 254101
This patch implements next relocations:
R_386_TLS_LE - Negative offset relative to static TLS (GNU version).
R_386_TLS_LE_32 - Offset relative to static TLS block.
These ones are created when using next code sequences:
* @tpoff - The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.
* @ntpoff Calculate the negative offset of the variable it is added to relative to the static TLS block.
The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.
Information was found in Ulrich Drepper, ELF Handling For Thread-Local Storage, http://www.akkadia.org/drepper/tls.pdf, (6.2, p76)
Differential revision: http://reviews.llvm.org/D14930
llvm-svn: 254090
https://docs.oracle.com/cd/E19683-01/817-3677/chapter6-26/index.html says:
R_386_GOTPC
Resembles R_386_PC32, except that it uses the address of the global offset table in its calculation. The symbol referenced in this relocation normally is _GLOBAL_OFFSET_TABLE_, which also instructs the link-editor to create the global offset table.
Currently _GLOBAL_OFFSET_TABLE_ has value == zero. And we use GOT address to calculate the relocation. This patch does not changes that. It just removes the method which is used only for x86. So it is close to non functional change.
Differential revision: http://reviews.llvm.org/D14993
llvm-svn: 254088
R_X86_64_GOTTPOFF is not always requires GOT entries. Some relocations can be converted to local ones.
Differential revision: http://reviews.llvm.org/D14713
llvm-svn: 253966
With these relocations, it is now possible to build a simple "hello world"
program for AArch64 Debian.
Differential revision: http://reviews.llvm.org/D14917
llvm-svn: 253957
This adds support for:
* Uniquing CIEs
* Dropping FDEs that point to dropped sections
It drops 657 488 bytes from the .eh_frame of a Release+Asserts clang.
The link time impact is smallish. Linking clang with a Release+Asserts
lld goes from 0.488064805 seconds to 0.504763060 seconds (1.034 X slower).
llvm-svn: 252790
leaq symbol@tlsld(%rip), %rdi
call __tls_get_addr@plt
symbol@tlsld (R_X86_64_TLSLD) instructs the linker to generate a tls_index entry (two GOT slots) in the GOT for the entire module (shared object or executable) with an offset of 0. The symbol for this GOT entry doesn't matter (as long as it's either local to the module or null), and gold doesn't put a symbol in the dynamic R_X86_64_DTPMOD64 relocation for the GOT entry.
All other platforms defined in http://www.akkadia.org/drepper/tls.pdf except for Itanium use a similar model where global and local dynamic GOT entries take up 2 contiguous GOT slots, so we can handle this in a unified manner if we don't care about Itanium.
While scanning relocations we need to identify local dynamic relocations and generate a single tls_index entry in the GOT for the module and store the address of it somewhere so we can later statically resolve the offset for R_X86_64_TLSLD relocations. We also need to generate a R_X86_64_DTPMOD64 relocation in the RelaDyn relocation section.
This implementation is a bit hacky. It side steps the issue of GotSection and RelocationSection only handling SymbolBody entries by relying on a specific relocation type. The alternative to this seemed to be completely rewriting how GotSection and RelocationSection work, or using a different hacky signaling method.
llvm-svn: 252682
relocateOne is a function to apply a relocation. Previously, that
function took a pointer to Elf_Rel or Elf_Rela in addition to other
information that can be derived from the relocation entry. This patch
simplifies the parameter list. The new parameters, P or SA, are used
in the ELF spec to describe each relocation. These names make
relocateOne look like a mechanical, direct translation of the ELF spec.
llvm-svn: 251090
Given the name, it is natural for this function to compute the full target.
This will simplify SHF_MERGE handling by allowing getLocalRelTarget to
centralize the addend logic.
llvm-svn: 250731
If one file is MIPS64EL, all files are MIPS64EL, and vice versa.
We do not have to look up MIPS-ness for each file. Currently we
do not support 64-bit MIPS, so the config value is always false.
llvm-svn: 250566
R_PPC64_TOC does not have an associated symbol, but does have a non-zero VA
that target-specific code must compute using some non-trivial rule. We
handled this as a special case in PPC64TargetInfo::relocateOne, where
we knew to write this special address, but that did not work when creating shared
libraries. The special TOC address needs to be the subject of a
R_PPC64_RELATIVE relocation, and so we also need to know how to encode this
special address in the addend of that relocation.
Thus, some target-specific logic is necessary when creating R_PPC64_RELATIVE as
well. To solve this problem, we teach getLocalRelTarget to handle R_PPC64_TOC
as a special case. This allows us to remove the special case in
PPC64TargetInfo::relocateOne (simplifying code there), and naturally allows the
existing logic to do the right thing when creating associated R_PPC64_RELATIVE
relocations for shared libraries.
llvm-svn: 250555
When a relocation points to a SHF_MERGE section, the addend has special meaning.
It should be used to find what in the section the relocation points to. It
should not be added to the output position.
Centralizing it means that the above rule will be implemented once, not once
per target.
llvm-svn: 250421
Under the PPC64 ELF ABI, functions that might call into other modules (and,
thus, need to load a different TOC base value into %r2), need to restore the
old value after the call. The old value is saved by the .plt code, and the
caller only needs to include a nop instruction after the call, which the linker
will transform into a TOC restore if necessary.
In order to do this the relocation handler needs two things:
1. It needs to know whether the call instruction it is modifying is targeting
a .plt stub that will load a new TOC base value (necessitating a restore after
the call).
2. It needs to know where the buffer ends, so that it does not accidentally
run off the end of the buffer when looking for the 'nop' instruction after the
call.
Given these two pieces of information, we can insert the restore instruction in
place of the following nop when necessary.
llvm-svn: 250110
This patch adds AsNeeded and IsUsed bool fields to SharedFile. AsNeeded bit
is set if the DSO is enclosed with --as-needed and --no-as-needed. IsUsed
bit is off by default. When we adds a symbol to the symbol table for dynamic
linking, we set its SharedFile's IsUsed bit.
If AsNeeded is set but IsUsed is not set, we don't want to write that
file's SO name to DT_NEEDED field.
http://reviews.llvm.org/D13579
llvm-svn: 249998
Previously, output sections that are handled specially by the linker
(e.g. PLT or GOT) were created by Writer and passed to other classes
that need them. The problem was that because these special sections
are required by so many classes, the plumbing work became too much
burden.
This patch is to simply make them accessible from anywhere in the
linker to eliminate the plumbing work once and for all.
http://reviews.llvm.org/D13486
llvm-svn: 249590
This is a case that requires --start-group --end-group with regular ELF
linkers. Fortunately it is still possible to handle it with lazy symbols without
taking a second look at archives.
Thanks to Michael Spencer for the bug report.
llvm-svn: 249406
This is just enough to get PLT working on 32 bit x86.
The idea behind using a virtual interface is that it should be easy to
convert any of the functions to template parameters if any turns out to be
performance critical.
llvm-svn: 248308