This doesn't change how many times we construct domtrees in the normal
pipeline, and it removes fragility and instability where basic-aa may
not be run in time to see domtrees because they happen to be constructed
afterward.
This isn't quite as clean as the change to memdep because there is
a mode where basic-aa specifically runs without domtrees -- in the
hacking version used by function-attrs with the legacy pass manager.
llvm-svn: 263234
This doesn't cause us to construct dominator trees any more often in the
normal pipeline, and removes an entire mode of memdep that needed to be
reasoned about and maintained. Perhaps more importantly, it removes the
ability for the results of memdep to be different because of accidental
pass scheduling goofs or the order of evaluation of 'getResult' calls.
Essentially, 'getCachedResult', unless across IR-unit boundaries, is
extremely dangerous. We need to work much harder to avoid it (or its
analog in the old pass manager).
llvm-svn: 263232
much to my horror, so use variables to fix it in place.
This terrifies me. Both basic-aa and memdep will provide more precise
information when the domtree and/or the loop info is available. Because
of this, if your pass (like GVN) requires domtree, and then queries
memdep or basic-aa, it will get more precise results. If it does this in
the other order, it gets less precise results.
All of the ideas I have for fixing this are, essentially, terrible. Here
I've just caused us to stop having unspecified behavior as different
implementations evaluate the order of these arguments differently. I'm
actually rather glad that they do, or the fragility of memdep and
basic-aa would have gone on unnoticed. I've left comments so we don't
immediately break this again. This should fix bots whose host compilers
evaluate the order of arguments differently from Clang.
llvm-svn: 263231
It is really odd that Mips differentiates symbols that are born local
and those that become local because of hidden visibility. I don't know
enough mips to known if this is a bug or not.
llvm-svn: 263228
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
clarify their purpose.
Firstly, call them "...Mixin" types so it is clear that there is no
type hierarchy being formed here. Secondly, use the term 'Info' to
clarify that they aren't adding any interesting *semantics* to the
passes or analyses, just exposing APIs used by the management layer to
get information about the pass or analysis.
Thanks to Manuel for helping pin down the naming confusion here and come
up with effective names to address it.
In case you already have some out-of-tree stuff, the following should be
roughly what you want to update:
perl -pi -e 's/\b(Pass|Analysis)Base\b/\1InfoMixin/g'
llvm-svn: 263217
work in the face of the limitations of DLLs and templated static
variables.
This requires passes that use the AnalysisBase mixin provide a static
variable themselves. So as to keep their APIs clean, I've made these
private and befriended the CRTP base class (which is the common
practice).
I've added documentation to AnalysisBase for why this is necessary and
at what point we can go back to the much simpler system.
This is clearly a better pattern than the extern template as it caught
*numerous* places where the template magic hadn't been applied and
things were "just working" but would eventually have broken
mysteriously.
llvm-svn: 263216
Since the names are used in a loop this does more work in debug builds. In
release builds value names are generally discarded so we don't have to do
the concatenation at all. It's also simpler code, no functional change
intended.
llvm-svn: 263215
The constant is now at source operand 1 (previously at 2).
This is also how it is in legacy AMD sp3 assembler.
Update tests.
Differential Revision: http://reviews.llvm.org/D17984
llvm-svn: 263212
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
Summary:
This fixes a couple of corner cases in FileSpec, related to AppendPathComponent and
handling of root directory (/) file spec. I add a bunch of unit tests for the new behavior.
Summary of changes:
FileSpec("/bar").GetCString(): before "//bar", after "/bar".
FileSpec("/").CopyByAppendingPathComponent("bar").GetCString(): before "//bar", after "/bar".
FileSpec("C:", ePathSyntaxWindows).CopyByAppendingPathComponent("bar").GetCString(): before "C:/bar", after "C:\bar".
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18044
llvm-svn: 263207
Frontend authors are strongly encouraged to keep allocas
in the entry block, so don't bother visiting every instruction
in the other blocks of the function.
llvm-svn: 263206
This patch adds --thread option and use parallel_for_each to write
sections in regular OutputSections.
This is the first patch to use more than one threads.
Note that --thread is off by default because it is experimental.
At this moment I still want to focus on single thread performance
because multi-threading is not a magic wand to fix performance
problems after all. It is generally very hard to make a slow program
faster by threads. Therefore, I want to make the linker as efficient
as possible first and then look for opportunity to make it even faster
using more than one core.
Here are some numbers to link programs with and without --threads
and using GNU gold. Numbers are in seconds.
Clang
w/o --threads 0.697
w --threads 0.528
gold 1.643
Scylla
w/o --threads 5.032
w --threads 4.935
gold 6.791
GNU gold
w/o --threads 0.550
w --threads 0.551
gold 0.737
I limited the number of cores these processes can use to 4 using
perf command, so although my machine has 20 physical cores, the
performance gain I observed should be reproducible with a machine
which is not as beefy as mine.
llvm-svn: 263190
llvm::getDISubprogram walks the instructions in a function, looking for one in the scope of the current function, so that it can find the !dbg entry for the subprogram itself.
Now that !dbg is attached to functions, this should not be necessary. This patch changes all uses to just query the subprogram directly on the function.
Ideally this should be NFC, but in reality its possible that a function:
has no !dbg (in which case there's likely a bug somewhere in an opt pass), or
that none of the instructions had a scope referencing the function, so we used to not find the !dbg on the function but now we will
Reviewed by Duncan Exon Smith.
Differential Revision: http://reviews.llvm.org/D18074
llvm-svn: 263184
The swig typemaps had some magic for output File *'s on OS X that made:
SBDebugger.GetOutputFileHandle()
actually work. That was protected by a "#ifdef __MACOSX__", but the corresponding define
got lost going from the Darwin shell scripts to the python scripts for running
swig, so the code was elided. I need to pass the define to SWIG, but only when
targetting Darwin.
So I added a target-platform argument to prepare_bindings, and if that
is Darwin, I pass -D__APPLE__ to swig, and that activates this code again, and
GetOutputFileHandle works again. Note, I only pass that argument for the Xcode
build. I'm sure it is possible to do that for cmake, but my cmake-foo is weak.
I should have been able to write a test for this by creating a debugger, setting the
output file handle to something file, writing to it, getting the output file handle
and reading it. But SetOutputFileHandle doesn't seem to work from Python, so I'd
have to write a pexpect test to test this, which I'd rather not do.
llvm-svn: 263183
This is reduced from an issue found in practice.
The original version of D18012 needed another patch to handle this, but
it now works since we are using a more correct GV->hasAppendingLinkage()
check that Rafael suggested.
This is what remains of that other patch.
llvm-svn: 263181
LLVM Gold plugin decides which instance of a common symbol it wants
based on the symbol size in claim_file_hook. If the file that
contains the chosen instance is later dropped from the link, we end
up with an undefined reference.
This change delays this decision until the set of the included files
is known.
llvm-svn: 263180
Summary:
More generally, appending linkage is a special case that we don't want
to create a SymbolBody for.
Reviewers: rafael, ruiu
Subscribers: Bigcheese, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18012
llvm-svn: 263179