As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
The issue is not if the value is pcrel. It is whether we have a
relocation or not.
If we have a relocation, the static linker will select the upper
bits. If we don't have a relocation, we have to do it.
llvm-svn: 307730
For ELF, a movw+movt pair is handled as two separate relocations.
If an offset should be applied to the symbol address, this offset is
stored as an immediate in the instruction (as opposed to stored as an
offset in the relocation itself).
Even though the actual value stored in the movt immediate after linking
is the top half of the value, we need to store the unshifted offset
prior to linking. When the relocation is made during linking, the offset
gets added to the target symbol value, and the upper half of the value
is stored in the instruction.
This makes sure that movw+movt with offset symbols get properly
handled, in case the offset addition in the lower half should be
carried over to the upper half.
This makes the output from the additions to the test case match
the output from GNU binutils.
For COFF and MachO, the movw/movt relocations are handled as a pair,
and the overflow from the lower half gets carried over to the movt,
so they should keep the shifted offset just as before.
Differential Revision: https://reviews.llvm.org/D35242
llvm-svn: 307713
ELF has no restrictions on where undefined symbols go relative to other defined
symbols. In fact, gas just sorts them together. Do the same.
This was there since r111174 probably just because the MachO writer has it.
llvm-svn: 238513
Many of these predate llvm-readobj. With elf-dump we had to match
a relocation to symbol number and symbol number to symbol name or
section number.
llvm-svn: 235015
One could make the argument for writing it immediately after the ELF header,
but writing it in the middle of the sections like we were doing just makes
it harder for no reason.
llvm-svn: 234400
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
llvm-svn: 182908
text section.
Assume the following bit of annotated assembly:
.section .data.rel.ro,"aw",%progbits
.align 2
.LAlpha:
.long startval(GOTOFF)
.text
.align 2
.type main,%function
.align 4
main: ;;; assume "main" starts at offset 0x20
0x0 push {r11, lr}
0x4 movw r0, :lower16:(.LAlpha-(.LBeta+8))
;;; ==> (.AddrOf(.LAlpha) - ((.AddrOf(.LBeta) - .AddrOf(".")) + 8)
;;; ==> (??? - ((16-4) + 8) = -20
0x8 movt r0, :upper16:(.LAlpha-(.LBeta+8))
;;; ==> (.AddrOf(.LAlpha) - ((.AddrOf(.LBeta) - .AddrOf(".")) + 8)
;;; ==> (??? - ((16-8) + 8) = -16
0xc ... blah
.LBeta:
0x10 add r0, pc, r0
0x14 ... blah
.LGamma:
0x18 add r1, pc, r1
Above snippet results in the following relocs in the .o file for the
first pair of movw/movt instructions
00000024 R_ARM_MOVW_PREL_NC .LAlpha
00000028 R_ARM_MOVT_PREL .LAlpha
And the encoded instructions in the .o file for main: must be
00000020 <main>:
20: e92d4800 push {fp, lr}
24: e30f0fec movw r0, #65516 ; 0xffec i.e. -20
28: e34f0ff0 movt r0, #65520 ; 0xfff0 i.e. -16
However, llc (prior to this commit) generates the following sequence
00000020 <main>:
20: e92d4800 push {fp, lr}
24: e30f0fec movw r0, #65516 ; 0xffec - i.e. -20
28: e34f0fff movt r0, #65535 ; 0xffff - i.e. -1
What has to happen in the ArmAsmBackend is that if the relocation is PC
relative, the 16 bits encoded as part of movw and movt must be both addends,
not addresses. It makes sense to encode addresses by right shifting the value
by 16, but the result is incorrect for PIC.
i.e., the right shift by 16 for movt is ONLY valid for the NON-PCRel case.
This change agrees with what GNU as does, and makes the PIC code run.
MC/ARM/elf-movt.s covers this case.
llvm-svn: 131674
- Fixed :upper16: fix up routine. It should be shifting down the top 16 bits first.
- Added support for Thumb2 :lower16: and :upper16: fix up.
- Added :upper16: and :lower16: relocation support to mach-o object writer.
llvm-svn: 123424
in the right direction. It eliminated some hacks and will unblock codegen
work. But it's far from being done. It doesn't reject illegal expressions,
e.g. (FOO - :lower16:BAR). It also doesn't work in Thumb2 mode at all.
llvm-svn: 123369
R_ARM_MOVT_PREL and R_ARM_MOVW_PREL_NC.
2. Fix minor bug in ARMAsmPrinter - treat bitfield flag as a bitfield, not an enum.
3. Add support for 3 new elf section types (no-ops)
llvm-svn: 123294