This will fix the case:
$ toyc -emit=jit test.toy
$ cat test.toy
def main() {
var a = 1;
print(a);
}
Without this patch it would trigger an assertion.
Differential Revision: https://reviews.llvm.org/D77464
It was failing in 32-bit Windows builds with:
$ ":" "RUN: at line 1"
$ "c:\src\llvm_package_944db8a4\build32_stage0\bin\lli.exe" "-mtriple=i686-pc-windows-msvc-elf" "-code-model=large" "C:\src\llvm_package_944db8a4\llvm-project\llvm\test\ExecutionEngine\MCJIT\cet-code-model-lager.ll"
# command stderr:
Assertion failed: Is64Bit && "Large code model is only legal in 64-bit mode.", file C:\src\llvm_package_944db8a4\llvm-project\llvm\lib\Target\X86\X86ISelLowering.cpp, line 4212
Let's see if this helps.
Summary:
This patch adds support for emission of following DWARFv5 macro forms
in .debug_macro section.
1. DW_MACRO_start_file
2. DW_MACRO_end_file
3. DW_MACRO_define_strp
4. DW_MACRO_undef_strp.
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D72828
Summary:
If the decoding functions are called with both start and end pointers
being nullptr, the function will crash due to a nullptr dereference.
This happens because the function does not recognise nullptr as a valid
end pointer.
Obviously, nobody is going to pass null pointers here deliberately, but
it can happen indirectly (as it did for me), when calling these
functions on an ArrayRef, as a default-initialized empty ArrayRef will
have both begin() and end() pointers equal to nullptr.
The fix is to simply remove the nullptr check. Passing nullptr for "end"
with a valid "begin" pointer will still work, as one cannot reach
nullptr by incrementing a valid pointer without triggerring UB.
Reviewers: dblaikie
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77304
Summary:
This patch adds the optional Error argument, and the Cursor variants to
more DataExtractor methods. The functions now behave the same way as
other error-aware functions (they set the error when they fail, and
don't do anything if the error is already set).
I have merged the LEB128 implementations via a template (similarly to
how fixed-size functions are handled) to reduce code duplication.
Depends on D77304.
Reviewers: dblaikie, aprantl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77306
Summary:
This patch adds an optional Error argument to DataExtractor functions
for string extraction, and makes them behave like other DataExtractor
functions (set the error if extraction fails, don't do anything if the
error is already set).
I have merged the StringRef and C string versions of the functions to
reduce code duplication.
Reviewers: dblaikie, MaskRay
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77307
Summary:
This is a roll forward of D77394 minus AlignmentFromAssumptions (which needs to be addressed separately)
Differences from D77394:
- DebugStr() now prints the alignment value or `None` and no more `Align(x)` or `MaybeAlign(x)`
- This is to keep Warning message consistent (CodeGen/SystemZ/alloca-04.ll)
- Removed a few unneeded headers from Alignment (since it's included everywhere it's better to keep the dependencies to a minimum)
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77537
Summary:
24 March 2020: LLVM 10.0.0 is out.
I gathered all deprecated function introduced between 9 and 10 and cleaned them up so they will be removed from 11.
> git log -p -S LLVM_ATTRIBUTE_DEPRECATED llvmorg-9.0.0..llvmorg-10.0.0
Reviewers: courbet
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77409
truncateVectorWithPACK has its own vector length controls, so we can rely on those directly. This helps some existing truncation to subvector tests, which were being combined later during shuffle lowering at which point the sign/zero bit detection had become obscured preventing lowerShuffleWithPACK working as well as it could.
Summary:
Modify lea/load/store instructions to accept `disp(index, base)`
style addressing mode (called ASX format). Also, uniform the
number of DAG nodes to have 3 operands for this ASX format
instructions, and update selectADDR functions to lower
appropriate MI.
Reviewers: arsenm, simoll, k-ishizaka
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D76822
Summary:
Usually when Clang emits an error Fix-It it does two things. It emits the diagnostic and then it fixes the
currently generated AST to reflect the applied Fix-It. While emitting the diagnostic is easy to implement,
fixing the currently generated AST is often tricky. That causes that some Fix-Its just keep the AST as-is or
abort the parsing process entirely. Once the parser stopped, any Fix-Its for the rest of the expression are
not detected and when the user manually applies the Fix-It, the next expression will just produce a new
Fix-It.
This is often occurring with quickly made Fix-Its that are just used to bridge temporary API changes
and that often are not worth implementing a proper API fixup in addition to the diagnostic. To still
give some kind of reasonable user-experience for users that have these Fix-Its and rely on them to
fix their expressions, this patch adds the ability to retry parsing with applied Fix-Its multiple time to
give the normal Fix-It experience where things Clang knows how to fix are not causing actual expression
error (at least when automatically applying Fix-Its is activated).
The way this is implemented is just by having another setting in the expression options that specify how
often we should try applying Fix-Its and then reparse the expression. The default setting is still 1 for everyone
so this should not affect the speed in which we fail to parse expressions.
Reviewers: jingham, JDevlieghere, friss, shafik
Reviewed By: shafik
Subscribers: shafik, abidh
Differential Revision: https://reviews.llvm.org/D77214
This patch adds a -matrix-default-layout option which can be used to
set the default matrix layout to row-major or column-major (default).
The initial patch updates codegen for loads, stores, binary operators
and matrix multiply.
Reviewers: anemet, Gerolf, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D76325
Summary:
LLDB currently applies Fix-Its if they are attached to a Clang diagnostic that has the
severity "error". Fix-Its connected to warnings and other severities are supposed to
be ignored as LLDB doesn't seem to trust Clang Fix-Its in these situations.
However, LLDB also ignores all Fix-Its coming from "note:" diagnostics. These diagnostics
are usually emitted alongside other diagnostics (both warnings and errors), either to keep
a single diagnostic message shorter or because the Fix-It is in a different source line. As they
are technically their own (non-error) diagnostics, we currently are ignoring all Fix-Its associated with them.
For example, this is a possible Clang diagnostic with a Fix-It that is currently ignored:
```
error: <user expression 1>:2:10: too many arguments provided to function-like macro invocation
ToStr(0, {,})
^
<user expression 1>:1:9: macro 'ToStr' defined here
#define ToStr(x) #x
^
<user expression 1>:2:1: cannot use initializer list at the beginning of a macro argument
ToStr(0, {,})
^ ~~~~
```
We also don't store "note:" diagnostics at all, as LLDB's abstraction around the whole diagnostic
concept doesn't have such a concept. The text of "note:" diagnostics is instead
appended to the last non-note diagnostic (which is causing that there is no "note:" text in the
diagnostic above, as all the "note:" diagnostics have been appended to the first "error: ..." text).
This patch fixes the ignored Fix-Its in note-diagnostics by appending them to the last non-note
diagnostic, similar to the way we handle the text in these diagnostics.
Reviewers: JDevlieghere, jingham
Reviewed By: JDevlieghere
Subscribers: abidh
Differential Revision: https://reviews.llvm.org/D77055
This patch adds initial fusion for load/multiply/store chains of matrix
operations.
The patch contains roughly two parts:
1. Code generation for a fused load/multiply/store chain (LowerMatrixMultiplyFused).
First, we ensure that both loads of the multiply operands do not alias the store.
If they do, we create new non-aliasing copies of the operands. Note that this
may introduce new basic block. Finally we process TileSize x TileSize blocks.
That is: load tiles from the input operands, multiply and store them.
2. Identify fusion candidates & matrix instructions.
As a first step, collect all instructions with shape info and fusion candidates
(currently @llvm.matrix.multiply calls). Next, try to fuse candidates and
collect instructions eliminated by fusion. Finally iterate over all matrix
instructions, skip the ones eliminated by fusion and lower the rest as usual.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D75566
The current return type sometimes leads to code like
to_vector<2>(ValueRange(loop.getInductionIvs())). It would be nice to
shorten it. Users who need access to Block::BlockArgListType (if there
are any), can always call getBody()->getArguments(); if needed.
Also remove getNumInductionVars(), since there is getNumLoops().
Differential Revision: https://reviews.llvm.org/D77526
llvm-dwp did not check section identifiers read from input files.
In the case of an unexpected identifier, the calculated index for
Contributions[] pointed outside the array. This fix avoids the issue
by skipping unsupported identifiers.
Differential Revision: https://reviews.llvm.org/D76543
In package files, the base offset provided by index sections should be
used to find the contribution of a unit. The patch adds that base
offset when reading range list tables.
Differential revision: https://reviews.llvm.org/D77401
This fixes the reading of location lists headers for compilation units
in package files by adjusting the reading offset according to the
corresponding record in the unit index. This is required for
DW_FORM_loclistx to work.
Differential revision: https://reviews.llvm.org/D77146
Without the patch, all version 5 compile units in a DWP file read
location tables from the beginning of a .debug_loclists.dwo section.
The patch fixes that by adjusting the reading offset the same way as
for pre-v5 units. The section identifier to find the contribution
entry corresponds to the version of the unit.
Differential revision: https://reviews.llvm.org/D77145
DWARFv5 defines index sections in package files in a slightly different
way than the pre-standard GNU proposal, see Section 7.3.5 in the DWARF
standard and https://gcc.gnu.org/wiki/DebugFissionDWP for GNU proposal.
The main concern here is values for section identifiers, which are
partially overlapped with changed meanings. The patch adds support for
v5 index sections and resolves that difficulty by defining a set of
identifiers for internal use which can represent and distinct values
of both standards.
Differential Revision: https://reviews.llvm.org/D75929
This is a preparation for an upcoming patch which adds support for
DWARFv5 unit index sections. The patch adds tag "_EXT_" to identifiers
which reference sections that are deprecated in the DWARFv5 standard.
See D75929 for the discussion.
Differential Revision: https://reviews.llvm.org/D77141
There is a number of places in llvm-dwp.cpp where a section identifier
is translated into an index of an internal array of section
contributions, and another place where the index is converted to an
on-disk value. All these places use direct expressions like
"<id> - DW_SECT_INFO" or "<index> + DW_SECT_INFO", exploiting the fact
that DW_SECT_INFO is the minimum valid value of that kind.
The patch adds distinct functions for that translation. The goal is to
make the code more readable and to prepare it to support index sections
of new versions, where the numeric scheme of section indexes is changed.
Differential Revision: https://reviews.llvm.org/D76067
in the token stream.
Previously we deleted all template-id annotations at the end of each
top-level declaration. That doesn't work: we can do some lookahead and
form a template-id annotation, and then roll back that lookahead, parse,
and decide that we're missing a semicolon at the end of a top-level
declaration, before we reach the annotation token. In that situation,
we'd end up parsing the annotation token after deleting its associated
data, leading to various forms of badness.
We now only delete template-id annotations if the preprocessor can
assure us that there are no annotation tokens left in the token stream
(or if we're already at EOF). This lets us delete the annotation tokens
earlier in a lot of cases; we now clean them up at the end of each
statement and class member, not just after each top-level declaration.
This also permitted some simplification of the delay-parsed templates
cleanup code.
We're ANDing with 1 right after which will cause the SIGN_EXTEND to
be combined to ANY_EXTEND later. Might as well just start with an
ANY_EXTEND.
While there replace create the AND using the getZeroExtendInReg
helper to remove the need to explicitly create the VecOnes constant.
Move the listing of allowed clauses per OpenMP directive to the new
macro file in `llvm/Frontend/OpenMP`. Also, use a single generic macro
that specifies the directive and one allowed clause explicitly instead
of a dedicated macro per directive.
We save 800 loc and boilerplate for all new directives/clauses with no
functional change. We also need to include the macro file only once and
not once per directive.
Depends on D77112.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D77113
This code is replacing a shift with a new shift on an extended type.
If the shift amount type can't represent the maximum shift amount
for the new type, the amount needs to be extended to a type that
can.
Previously, the code just hardcoded a check for 256 bits which
seems to have been an assumption that the original shift amount
was MVT::i8. But that seems more catered to a specific target
like X86 that uses i8 as its legal shift amount type. Other
targets may use different types.
This commit changes the code to look at the real type of the shift
amount and makes sure it has enough bits for the Log2 of the
new type. There are similar checks to this in SelectionDAGBuilder
and LegalizeIntegerTypes.
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Reviewed By: fghanim
Differential Revision: https://reviews.llvm.org/D77112
The new and old pass managers (PassManagerBuilder.cpp and
PassBuilder.cpp) are exposed to an `extern` declaration of
`attributor-disable` option which will guard the addition of the
attributor passes to the pass pipelines.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76871
Add a new overload of StaticLibraryDefinitionGenerator::Load that takes a triple
argument and supports loading archives from MachO universal binaries in addition
to regular archives.
The LLI tool is updated to use this overload.
This addresses the immediate bug, though in theory we could still
produce a default parameter for the DWARF in this test case - but other
cases will be definitely unachievable (you could have a default
parameter that cannot be evaluated - so long as the user overrode it
with another value rather than relying on that default)
Summary:
This revision performs several cleanups on the translation infra:
* Removes the TranslateCLParser library and consolidates into Translation
- This was a weird library that existed in Support, and didn't really justify being a standalone library.
* Cleans up the internal registration and consolidates all of the translation functions within one registry.
Differential Revision: https://reviews.llvm.org/D77514
Summary: Blocks are numbered locally within a region, so numbering above the parent region is unnecessary.
Differential Revision: https://reviews.llvm.org/D77510