the option to print the runtime-specific description has been modified in the frame variable, memory read and expression command.
All three commands now support a --object-description option, with a shortcut of -O (uppercase letter o)
This is a breaking change:
frame variable used --objc as the long option name
expression used -o as a shortcut
memory read uses --objd as the long option name
Hopefully, most users won't be affected by the change since people tend to access "expression --object-description" under the alias "po" which still works
The test suite has been tweaked accordingly.
llvm-svn: 169961
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
This should delay initialization of Python until strictly necessary and speed-up debugger startup
Also, convert formatters for SEL and BOOL ObjC data-types from Python to C++, in order to reap more performance benefits from the above changes
llvm-svn: 166967
I added the ability for a process plug-in to implement custom commands. All the lldb_private::Process plug-in has to do is override:
virtual CommandObject *
GetPluginCommandObject();
This object returned should be a multi-word command that vends LLDB commands. There is a sample implementation in ProcessGDBRemote that is hollowed out. It is intended to be used for sending a custom packet, though the body of the command execute function has yet to be implemented!
llvm-svn: 165861
It is now a regex command alias that more faithfully emulates gdb's
behavior, most importantly, "bt 5" will backtrace 5 frames of the
currently selected thread. "bt all" still backtraces all threads
(unlike gdb) and for users who have learned to use "bt -c 5", that
form is still accepted.
llvm-svn: 165300
This checkin adds the capability for LLDB to load plugins from external dylibs that can provide new commands
It exports an SBCommand class from the public API layer, and a new SBCommandPluginInterface
There is a minimal load-only plugin manager built into the debugger, which can be accessed via Debugger::LoadPlugin.
Plugins are loaded from two locations at debugger startup (LLDB.framework/Resources/PlugIns and ~/Library/Application Support/LLDB/PlugIns) and more can be (re)loaded via the "plugin load" command
For an example of how to make a plugin, refer to the fooplugin.cpp file in examples/plugins/commands
Caveats:
Currently, the new API objects and features are not exposed via Python.
The new commands can only be "parsed" (i.e. not raw) and get their command line via a char** parameter (we do not expose our internal Args object)
There is no unloading feature, which can potentially lead to leaks if you overwrite the commands by reloading the same or different plugins
There is no API exposed for option parsing, which means you may need to use getopt or roll-your-own
llvm-svn: 164865
Add 'attach <pid>|<process-name>' command to lldb, as well as 'detach' which is an alias of 'process detach'.
Add two completion test cases for "attach" and "detach".
llvm-svn: 162573
Added a new "interpreter" properties to encapsulate any properties for the command interpreter. Right now this contains only "expand-regex-aliases", so you can now enable (disabled by default) the echoing of the command that a regular expression alias expands to:
(lldb) b main
Breakpoint created: 1: name = 'main', locations = 1
Note that the expanded regular expression command wasn't shown by default. You can enable it if you want to:
(lldb) settings set interpreter.expand-regex-aliases true
(lldb) b main
breakpoint set --name 'main'
Breakpoint created: 1: name = 'main', locations = 1
Also enabled auto completion for enumeration option values (OptionValueEnumeration) and for boolean option values (OptionValueBoolean).
Fixed auto completion for settings names when nothing has been type (it should show all settings).
llvm-svn: 162418
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
Fixed a case where the python interpreter could end up holding onto a previous lldb::SBProcess (probably in lldb.process) when run under Xcode. Prior to this fix, the lldb::SBProcess held onto a shared pointer to a lldb_private::Process. This in turn could cause the process to still have a thread list with stack frames. The stack frames would have module shared pointers in the lldb_private::SymbolContext objects.
We also had issues with things staying in the shared module list too long when we found things by UUID (we didn't remove the out of date ModuleSP from the global module cache).
Now all of this is fixed and everything goes away between runs.
llvm-svn: 160140
running natively on arm - on iOS we have to do some extra work to
track the inferior process if we launch with a shell intermediary.
<rdar://problem/11719396>
llvm-svn: 159803
Execute which was never going to get run and another ExecuteRawCommandString. Took the knowledge of how
to prepare raw & parsed commands out of CommandInterpreter and put it in CommandObject where it belongs.
Also took all the cases where there were the subcommands of Multiword commands declared in the .h file for
the overall command and moved them into the .cpp file.
Made the CommandObject flags work for raw as well as parsed commands.
Made "expr" use the flags so that it requires you to be paused to run "expr".
llvm-svn: 158235
The "run" and "r" aliases were for gdb compatability, so make then do what GDB does by default: launch in a shell.
For those that don't want launching with a shell by default, add the following to your ~/.lldbinit file:
command unalias run
command unalias r
command alias r process launch --
command alias run process launch --
llvm-svn: 157028
Added the ability to override command line commands. In some cases GUI interfaces
might want to intercept commands like "quit" or "process launch" (which might cause
the process to re-run). They can now do so by overriding/intercepting commands
by using functions added to SBCommandInterpreter using a callback function. If the
callback function returns true, the command is assumed to be handled. If false
is returned the command should be evaluated normally.
Adopted this up in the Driver.cpp for intercepting the "quit" command.
llvm-svn: 151708
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
parser has hitherto been an implementation waiting
for a use. I have now tied the '-o' option for
the expression command -- which indicates that the
result is an Objective-C object and needs to be
printed -- to the ExpressionParser, which
communicates the desired type to Clang.
Now, if the result of an expression is determined
by an Objective-C method call for which there is
no type information, that result is implicitly
cast to id if and only if the -o option is passed
to the expression command. (Otherwise if there
is no explicit cast Clang will issue an error.
This behavior is identical to what happened before
r146756.)
Also added a testcase for -o enabled and disabled.
llvm-svn: 147099