interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Having a constant value operand in the compound instruction
is not always profitable. This patch improves coremark by ~4% on
Hexagon.
Differential Revision: https://reviews.llvm.org/D53152
llvm-svn: 344284
Also, avoid comparing GUIDs when ordering global addresses, because
source file location can cause different GUID to be calculated. As a
result, a pair of symbols can compare "less" in one directory, but
"greater" in another.
llvm-svn: 344271
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
Finally all targets are enabling multiple regalloc hints, so the hook to
disable this can now be removed.
NFC.
Review: Simon Pilgrim
https://reviews.llvm.org/D52316
llvm-svn: 343851
The pattern had a couple of problems:
- It was checking for loads of bytes in the reverse order to what it
should have been looking for.
- It would replace loads of bytes with a load of a word without making
sure that the alignment was correct.
Thanks to Eli Friedman for pointing it out.
llvm-svn: 343514
This involves changing the shouldExpandAtomicCmpXchgInIR interface, but I have
updated the in-tree backends using this hook (ARM, AArch64, Hexagon) so they
will see no functional change. Previously this hook returned bool, but it now
returns AtomicExpansionKind.
This hook allows targets to select how a given cmpxchg is to be expanded.
D48131 uses this to expand part-word cmpxchg to a target-specific intrinsic.
See my associated RFC for more info on the motivation for this change
<http://lists.llvm.org/pipermail/llvm-dev/2018-June/123993.html>.
Differential Revision: https://reviews.llvm.org/D48130
llvm-svn: 342550
- Instead of having both `SUnit::dump(ScheduleDAG*)` and
`ScheduleDAG::dumpNode(ScheduleDAG*)`, just keep the latter around.
- Add `ScheduleDAG::dump()` and avoid code duplication in several
places. Implement it for different ScheduleDAG variants.
- Add `ScheduleDAG::dumpNodeName()` in favor of the `SUnit::print()`
functions. They were only ever used for debug dumping and putting the
function into ScheduleDAG is consistent with the `dumpNode()` change.
llvm-svn: 342520
Shufflevector instructions in LLVM IR that extract a subset of elements
of a longer input into a shorter vector can be done using VECTOR_SHUFFLEs.
This will avoid expanding them into constly extracts and inserts.
llvm-svn: 342091
Scalarization of a shuffle will break up the source vectors into individual
elements, and use them to assemble the resulting vector. An element type of
a legal vector type may not necessarily be a legal scalar type, so make
sure that the extracted values are extended to a legal scalar type.
llvm-svn: 342079
Disassemblers cannot depend on main target headers. The same is true for
MCTargetDesc, but there's a lot more cleanup needed for that.
llvm-svn: 341822
This replaces r337723. The global list in the module can be huge with LTO,
plus the module can change between different invocations of the pass, so
there is no easy way to deterministically cache the ordering (especially
in the presence of multiple threads).
llvm-svn: 341478
This removes the FrameAccess struct that was added to the interface
in D51537, since the PseudoValue from the MachineMemoryOperand
can be safely casted to a FixedStackPseudoSourceValue.
Reviewers: MatzeB, thegameg, javed.absar
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D51617
llvm-svn: 341454
For instructions that spill/fill to and from multiple frame-indices
in a single instruction, hasStoreToStackSlot and hasLoadFromStackSlot
should return an array of accesses, rather than just the first encounter
of such an access.
This better describes FI accesses for AArch64 (paired) LDP/STP
instructions.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D51537
llvm-svn: 341301
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
Vgather requires must be in a packet with a store, which contradicts
the no-packets feature. As a consequence, gather/scatter could not be
used with no-packets. Relax this, and allow gather packets as exceptions
to the no-packets requirements.
llvm-svn: 339177
This will remove suboptimal branching from the generated ll/sc loops.
The extra simplification pass affects a lot of testcases, which have
been modified to accommodate this change: either by modifying the
test to become immune to the CFG simplification, or (less preferablt)
by adding option -hexagon-initial-cfg-clenaup=0.
llvm-svn: 338774
For example v = <2 x i1> is represented as bbbbaaaa in a predicate register,
where b = v[1], a = v[0]. Extracting v[1] is equivalent to extracting bit 4
from the predicate register.
llvm-svn: 337934
If an HVX vector register is to be coalesced into a vector pair, make
sure that the vector pair will not have a function call in its live range,
unless it already had one. All HVX vector registers are volatile, so
any vector register live across a function call will have to be spilled.
If a vector needs to be spilled, and it's coalesced into a vector pair
then the whole pair will need to be spilled (even if only a part of it is
live), taking extra stack space.
llvm-svn: 337073
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.
However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.
This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction. It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one. As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:
def z_sadd : PatFrags<(ops node:$src1, node:$src2),
[(z_saddo node:$src1, node:$src2),
(add node:$src1, node:$src2)]>;
and then use this in the add instruction pattern:
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
These SystemZ target changes are implemented here as well.
Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)
The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
and InferAllTypes. Instead, it extracts a single DAG match
pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
pattern now shares most code with processing match patterns from
the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
EmitResultInstructionAsOperand is removed; everything now operates
solely on DAG match patterns.
Reviewed by: hfinkel
Differential Revision: https://reviews.llvm.org/D48545
llvm-svn: 336999
This is marginally helpful for removing redundant extensions, and the
code is easier to read, so it seems like an all-around win. In the new
test i8-phi-ext.ll, we used to emit an AssertSext i8; now we emit an
AssertZext i2, which allows the extension of the return value to be
eliminated.
Differential Revision: https://reviews.llvm.org/D49004
llvm-svn: 336868
An explicit untied use is not sufficient to maintain liveness of a
register redefined in a predicated instruction. For example
%1 = COPY %0
...
%1 = A2_paddif %2, %1, 1
could become
$r1 = COPY $r0
...
$r1 = A2_paddif $p0, $r1, 1
and later
$r1 = COPY $r0 ;; this is not really dead!
...
$r1 = A2_paddif $p0, $r0, 1
llvm-svn: 336662
Add the generic processor for Hexagon so that it can be used
with 3rd party programs that create a back-end with the
"generic" CPU. This patch also enables the JIT for Hexagon.
Differential Revision: https://reviews.llvm.org/D48571
llvm-svn: 335641