Replace Twine.h/SourceMgr.h includes with forward declarations and include in TGParser.cpp
Remove forward declarations we already have to include in Record.h
This is possible by adding two new ControlFlowInterface additions:
- A new interface, RegionBranchOpInterface
This interface allows for region holding operations to describe how control flows between regions. This interface initially contains two methods:
* getSuccessorEntryOperands
Returns the operands of this operation used as the entry arguments when entering the region at `index`, which was specified as a successor by `getSuccessorRegions`. when entering. These operands should correspond 1-1 with the successor inputs specified in `getSuccessorRegions`, and may be a subset of the entry arguments for that region.
* getSuccessorRegions
Returns the viable successors of a region, or the possible successor when branching from the parent op. This allows for describing which regions may be executed when entering an operation, and which regions are executed after having executed another region of the parent op. For example, a structured loop operation may always enter into the loop body region. The loop body region may branch back to itself, or exit to the operation.
- A trait, ReturnLike
This trait signals that a terminator exits a region and forwards all of its operands as "exiting" values.
These additions allow for performing more general dataflow analysis in the presence of region holding operations.
Differential Revision: https://reviews.llvm.org/D78447
This revision adds the initial pass for performing SCCP generically in MLIR. SCCP is an algorithm for propagating constants across control flow, and optimistically assumes all values to be constant unless proven otherwise. It currently supports branching control, with support for regions and inter-procedural propagation being added in followups.
Differential Revision: https://reviews.llvm.org/D78397
The promotion transformation is promoting all input and output buffers of the transformed op. The user might want to only promote some of these buffers.
Differential Revision: https://reviews.llvm.org/D78498
Summary:
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header in
order to follow other architectures.
Differential Revision: https://reviews.llvm.org/D78543
Summary:
This patch contains 2 separate changes:
1) the initializer of a variable should play no part in decl "invalid" bit;
2) preserve the invalid initializer via recovery exprs;
With 1), we will regress the diagnostics (one big regression is that we loose
the "selected 'begin' function with iterator type" diagnostic in for-range stmt;
but with 2) together, we don't have regressions (the new diagnostics seems to be
improved).
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78116
Summary:
This is achieved by calculating newly added includes and implicitly
parsing them as if they were part of the main file.
This also gets rid of the need for consistent preamble reads.
Reviewers: sammccall
Subscribers: ilya-biryukov, javed.absar, MaskRay, jkorous, mgrang, arphaman, jfb, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77392
This API call has been used recently with, a very valid, expectation
that it would do something useful but it doesn't actually query any
backend information. So, remove this method and merge its
functionality into getUserCost. As well as that, also use
getCastInstrCost to get a proper cost from the backend for the
concerned instructions though we only currently return the answer if
it's considered free. The default implementation now also checks
int/ptr conversions too, as well as truncs and bitcasts.
Differential Revision: https://reviews.llvm.org/D76124
The logic in ARMParallelDSP is setup to merge two 16-bits loads into
a 32-bit load and feed them into the smlads. This requires that four
loads are combined for the four inputs, but there wasn't actually a
check for this.
Differential Revision: https://reviews.llvm.org/D78492
This code was added in 887efa51c1 to
fix reverse iteration.
The call to InsertIntoBucket/InsertIntoBucketWithLookup can change
the number of buckets which will invalidate the BucketEnd. So
don't cache it and calculate it when creating the iterator.
Before we kept the first applicable `ident_t*` during deduplication of
runtime calls. The problem is that "first" is dependent on the iteration
order of a DenseMap. Since the proper solution, which is to combine the
information from all `ident_t*`, should be deterministic on its own, we
will not try to make the iteration order deterministic. Instead, we will
create a fresh `ident_t*` if there is not a unique existing `ident_t*`
to pick.
Don't error on Config.KeepFileSymbols for COFF and Mach-O.
Original description:
GNU objcopy removes STT_FILE symbols for strip-debug operations, and
keeps them for --discard-all operation. Match their behaviour for
llvm-objcopy.
Bug: https://github.com/android/ndk/issues/1212
Differential Revision: https://reviews.llvm.org/D76675
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
1) The first argument's type is `const MCInst &`, the third
argument's type is `MCInst &`, but they may be aliased to the same
variable
2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
loop.
In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.
Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain
Reviewed By: Razer6, MaskRay, bcain
Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78364
For the test case in this patch like below
struct t { int a; } __attribute__((preserve_access_index));
int foo(void *);
int test(struct t *arg) {
long param[1];
param[0] = (long)&arg->a;
return foo(param);
}
The IR right before BPF SimplifyPatchable phase:
%1:gpr = LD_imm64 @"llvm.t:0:0$0:0"
%2:gpr = LDD killed %1:gpr, 0
%3:gpr = ADD_rr %0:gpr(tied-def 0), killed %2:gpr
STD killed %3:gpr, %stack.0.param, 0
After SimplifyPatchable phase, the incorrect IR is generated:
%1:gpr = LD_imm64 @"llvm.t:0:0$0:0"
%3:gpr = ADD_rr %0:gpr(tied-def 0), killed %1:gpr
CORE_MEM killed %3:gpr, 306, %0:gpr, @"llvm.t:0:0$0:0"
Note that CORE_MEM pseudo op is introduced to encode
memory operations related to CORE. In the above, we intend
to check whether we have a store like
*(%3:gpr + 0) = ...
and if this is the case, we could replace it with
*(%0:gpr + @"llvm.t:0:0$0:0"_ = ...
Unfortunately, in the above, IR for the store is
*(%stack.0.param + 0) = %3:gpr
and transformation should not happen.
Note that we won't have problem if the actual CORE
dereference (arg->a) happens.
This patch fixed the problem by skip CORE optimization if
the use of ADD_rr result is not the base address of the store
operation.
Differential Revision: https://reviews.llvm.org/D78466
We now also use the BumpPtrAllocator from the Attributor in the
InformationCache. The lifetime of objects in either is pretty much the
same and it should result in consistently good performance regardless of
the allocator.
Doing so requires to call more constructors manually but so far that
does not seem to be problematic or messy.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 615359 (368257/s)
temporary memory allocations: 83315 (49859/s)
peak heap memory consumption: 75.64MB
peak RSS (including heaptrack overhead): 163.43MB
total memory leaked: 269.04KB
```
After:
```
calls to allocation functions: 613042 (359555/s)
temporary memory allocations: 83322 (48869/s)
peak heap memory consumption: 75.64MB
peak RSS (including heaptrack overhead): 162.92MB
total memory leaked: 269.04KB
```
Difference:
```
calls to allocation functions: -2317 (-68147/s)
temporary memory allocations: 7 (205/s)
peak heap memory consumption: 2.23KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
---
Summary:
861b69faee (rdar://problem/58789439) while
fixing symbolization for TSan completely broke ASan's runtime for the
simulators.
The problem with the previous patch is that the memory passed to
`putenv()` was poisoned and when passed to `putenv()` it tripped
an interceptor for `strchr()` which saw the memory was poisoned and
raised an ASan issue.
The memory was poisoned because `AtosSymbolizerProcess` objects
are created using ASan's internal allocator. Memory from this
allocator gets poisoned with `kAsanInternalHeapMagic`.
To workaround this, this patch makes the memory for the environment
variable entry a global variable that isn't poisoned.
This pass also adds a `DCHECK(getenv(K_ATOS_ENV_VAR))` because the
following DCHECK would crash because `internal_strcmp()` doesn't
work on nullptr.
rdar://problem/62067724
Reviewers: kubamracek, yln
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D78525
This patch gets the asserts working correctly when LLVM_REVERSE_ITERATION=On by fixing the iterators returned by the DenseMap::find* methods so that they return well-formed iterators that work with reverse iteration, and satisfy the assertions.
Recommits c51b45e32e
Reverted in b350c666ab due to some
(Google-internal) regressions I cannot reproduce... (so we'll see if
they reproduce this time around)
The previous code result a mismatch between block argument types and
predecessor successor args when a type conversion was needed in a
multiblock case. It was assuming the replaced result types matched the
region result types.
Also, slighly improve the debug output from the inliner.
Differential Revision: https://reviews.llvm.org/D78415
A recent change (4e86e5eedc), broke `LLVM_REVERSE_ITERATION` for DenseMaps by adding an assert. It is valid to de-reference and increment one step behind `End` when reverse iteration is enabled because `End` is actually the start of the pointer bucket.
With clang option -funique-internal-linkage-symbols, symbols with
internal linkage get names with the module hash appended.
Differential Revision: https://reviews.llvm.org/D78243