To be more consistent with other pass struct names.
There are still more passes that don't end with "Pass", but these are the important ones.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D112935
This patch fixes:
llvm/lib/ProfileData/InstrProf.cpp:146:3: error: default label in
switch which covers all enumeration values
[-Werror,-Wcovered-switch-default]
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
Using user-provided data as a format string is a well known source of
security vulnerabilities. For this reason, it is a good idea to compile
our code with -Wformat-nonliteral, which basically warns if a non-constant
string is used as a format specifier. This is the compiler’s best signal
that a format string call may be insecure.
I audited the code after adding the warning and made sure that the few
places where we used a non-literal string as a format string were not
potential security issues. I either disabled the warning locally for
those instances or fixed the warning by using a literal. The idea is
that after we add the warning to the build, any new use of a non-literal
string in a format string will trigger a diagnostic, and we can either
get rid of it or disable the warning locally, which is a way of
acknowledging that it has been audited.
I also looked into enabling it in the test suite, which would perhaps
allow finding additional instances of it in our headers, however that
is not possible at the moment because Clang doesn't support putting
__attribute__((__format__(...))) on variadic templates, which would
be needed.
rdar://84571685
Differential Revision: https://reviews.llvm.org/D112927
Sometimes if llvm-reduce is interrupted in the middle of a delta pass on
a large file, it can take quite some time for the tool to start actually
doing new work if it is restarted again on the partially-reduced file. A
lot of time ends up being spent testing large chunks when these large
chunks are very unlikely to actually pass the interestingness test. In
cases like this, the tool will complete faster if the starting
granularity is reduced to a finer amount. Thus, we introduce a command
line flag that automatically divides the chunks into smaller subsets a
fixed, user-specified number of times prior to beginning the core loop.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D112651
Split the code for parsing hexadecimal floating point numbers from the
code for parsing the decimal floating point numbers so that the parsing
can be faster for both of them.
This decreases the time for the benchmark in release mode by about 15%,
which noticeably beats GLibc.
Old version: 2.299s
New version: 1.893s
GLibc: 2.133s
Tests run by running the following command 10 times for each version:
time ~/llvm-project/build/bin/libc_str_to_float_comparison_test ~/parse-number-fxx-test-data/data/*
the parse-number-fxx-test-data-repository is here:
fe94de252c
It's important to build llvm-libc in Release mode for accurate
performance comparisons against glibc (set -DCMAKE_BUILD_TYPE=Release in
your cmake).
You also have to build the libc_str_to_float_comparison_test target.
Reviewed By: lntue
Differential Revision: https://reviews.llvm.org/D113036
If profile data is malformed for any kind of reason, we generate
an error that only reports "malformed instrumentation profile data"
without any further information. This patch extends InstrProfError
class to receive an optional error message argument, so that we can
do better error reporting.
Differential Revision: https://reviews.llvm.org/D108942
The ASAN build failed due to using pointers to a temporary whose
lifetime had expired.
Updating the libc++ Docker image to Ubuntu Focal caused some breakage.
This was temporary disabled in D112737. This re-enables two of these
tests.
Reviewed By: ldionne, #libc
Differential Revision: https://reviews.llvm.org/D113137
The tests fails in debug mode since it manipulates an iterator to a
`std::string` returned from the dylib. This is a known issue for the
debug iterators.
Updating the libc++ Docker image to Ubuntu Focal caused some breakage.
This was temporary disabled in D112737. This re-enables one of these
tests.
Reviewed By: ldionne, #libc, Quuxplusone
Differential Revision: https://reviews.llvm.org/D113139
The CMake dependencies don't properly list the libc++ headers. When a
libc++ header is modified the affected benchmarks aren't rebuild. This
makes testing benchmarks tricky and may cause accidentally not using the
latest modifications during testing. This change causes CMake to
determine the proper dependencies.
This shouldn't affect the CI build.
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D113419
PR52408 reported an sh_info=0 instance. I have seen sh_info=0
independently before.
sh_info>=num_sections is probably very rare. Just use one diagnostic for
the two types of errors.
Delete invalid-relocations.test which is covered by invalid/bad-reloc-target.test
Differential Revision: https://reviews.llvm.org/D113466
If the procedure pointer has an explicit interface, its characteristics must
equal the characteristics of its target, except that the target may be pure or
elemental also when the pointer is not (cf. F2018 10.2.2.4(3)). In the semantics
check for assignment of procedure pointers, the attributes of the procedures
were not checked correctly due to a typo. This caused some illegal
pointer-target-combinations to pass without raising an error. Fix this, and
expand the test case to improve the coverage of procedure pointer assignment
checks.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D113368
Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op1)
I'm not sure if this is really an improvement in IR because
we probably have better recognition/analysis for min/max,
but this lines up with the fold we do for the icmp+select
idiom and removes another diff from D98152.
This is similar to the previous fold in the code that was
added with:
83c2fb9f66baa6a85130https://alive2.llvm.org/ce/z/5MrVB9
The Swift stdlib uses absolute symbols in the dylib to communicate
feature flags to the process. LLDB's expression evaluator needs to be
able to find them. This wires up absolute symbols so they show up in
the symtab lookup command, which is also all that's needed for them to
be visible to the expression evaluator JIT.
rdar://85093828
Differential Revision: https://reviews.llvm.org/D113445
These should be all the commands from [1] except those that are marked
obsolete, and "link" / "endlink", as that conflicts with the existing
HeaderDoc pair "link / "/link". For some commands we don't have the
ideal category, but it should work good enough for most cases.
There seems to be no existing test for most commands (except the ones
interpreted by -Wdocumentation), and to some extent such a test wouldn't
look very interesting. But I added a test for the correct parsing of
formulas, as they're a bit special. And I had to adapt
comment-lots-of-unknown-commands.c because typo correction was kicking
in and recognizing some of the commands.
This should fix a couple of reported bugs: PR17437, PR19581, PR24062
(partially, no diagnostic for matching cond/endcond), PR32909, PR37813,
PR44243 (partially, email@domain.com must be addressed separately).
[1] https://www.doxygen.nl/manual/commands.html
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D111190
Deduction guides for containers should not participate in overload
resolution when called with certain incorrect types (e.g. when called
with a template argument in place of an `InputIterator` that doesn't
qualify as an input iterator). Similarly, class template argument
deduction should not select `unique_ptr` constructors that take a
a pointer.
The tests try out every possible incorrect parameter (but never more
than one incorrect parameter in the same invocation).
Also add deduction guides to the synopsis for associative and unordered
containers (this was accidentally omitted from [D112510](https://reviews.llvm.org/D112510)).
Differential Revision: https://reviews.llvm.org/D112904
Currently, we permit -mtp=cp15 even for targets that don't implement the
TLS register. When building for ARMv6 or earlier, this means we emit
instructions that will UNDEF at runtime. For Thumb1, passing -mtp=cp15
will trigger an assert in the backend.
So let's add some diagnostics to ensure that -mtp=cp15 is only accepted
for ARMv6T2 or newer.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D113026
This patch adds minimal support for D programming language demangling on LLVM
core based on the D name mangling spec. This will allow easier integration on a
future LLDB plugin for D either in the upstream tree or outside of it.
Minimal support includes recognizing D demangling encoding and at least one
mangling name, which in this case is `_Dmain` mangle.
Reviewed By: jhenderson, lattner
Differential Revision: https://reviews.llvm.org/D111414
Implement support for loading the stack canary from a memory location held in
the TLS register, with an optional offset applied. This is used by the Linux
kernel to implement per-task stack canaries, which is impossible on SMP systems
when using a global variable for the stack canary.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D112768
Have standalone builds define uppercase_CMAKE_BUILD_TYPE and use it.
llvm/CMakeLists.txt defines uppercase_CMAKE_BUILD_TYPE for regular LLVM
builds with OpenMP enabled.
Differential Revision: https://reviews.llvm.org/D112951
PR/52372
Differential Revision: https://reviews.llvm.org/D112977
New changes:
- use llvm-otool instead of `otool` which doesn't in exist on non-OSX platforms
- add llvm-otool to the set of tools used by test so that the bot will use the <build_dir>/bin/llvm-otool instead of the unqualified `llvm-otool` (which may not exist)
- update tests since the latest (TOT) llvm-otool prints a space between two bytes and the old one doesn't.
Scopes can have an optional hint for how to present this scope in the UI:
https://microsoft.github.io/debug-adapter-protocol/specification#Types_Scope
The IDEs can use the hint to present the data accordingly. For example,
Visual Studio has a separate Registers window, which is populated with the
data from the scope with `presentationHint: "registers"`.
Reviewed By: wallace
Differential Revision: https://reviews.llvm.org/D113400
Even if building cxx_static in itself doesn't actually link in the
requested unwinder, add a synthetic dependency so that building
cxx_static makes sure that the unwinder that was requested to be used
also gets built.
This makes sure that tests (when run with just a plain "ninja check-cxx")
actually use the newly built unwinder, as intended.
Differential Revision: https://reviews.llvm.org/D113467
Some time back I extended GCC's '# NNN' line marker semantics.
Specifically popping to a blank filename will restore the filename to
that of the popped-to include. Restore to line 5 of including file
(escaped BOL #'s to avoid git eliding them):
\# 5 "" 2
Added documentation for this line control extension.
This was useful in developing modules tests, but turned out to also be
useful with machine-generated source code. Specifically, a generated
include file that itself includes fragments from elsewhere. The
ability to pop to the generated include file -- with its full path
prefix -- is useful for diagnostic & debug purposes. For instance
something like:
// Machine generated -- DO NOT EDIT
Type Var = {
\# 7 "encoded.dsl" 1 // push to snippet-container
{snippet, of, code}
\# 6 " 2 // Restore to machined-generated source
,
};
// user-code
...
\#include "dsl.h"
...
That pop to "" will restore the filename to '..includepath../dsl.h',
which is better than restoring to plain "dsl.h".
Differential Revision: https://reviews.llvm.org/D113425
combineMulToPMADDWD is currently limited to legal types, but there's no reason why we can't handle any larger type that the existing SplitOpsAndApply code can use to split to legal X86ISD::VPMADDWD ops.
This also exposed a missed opportunity for pre-SSE41 targets to handle SEXT ops from types smaller than vXi16 - without PMOVSX instructions these will always be expanded to unpack+shifts, so we can cheat and convert this into a ZEXT(SEXT()) sequence to make it a valid PMADDWD op.
Differential Revision: https://reviews.llvm.org/D110995
Changes VPReplicateRecipe to extract the last lane from an unconditional,
uniform store instruction. collectLoopUniforms will also add stores to
the list of uniform instructions where Legal->isUniformMemOp is true.
setCostBasedWideningDecision now sets the widening decision for
all uniform memory ops to Scalarize, where previously GatherScatter
may have been chosen for scalable stores.
This fixes an assert ("Cannot yet scalarize uniform stores") in
setCostBasedWideningDecision when we have a loop containing a
uniform i1 store and a scalable VF, which we cannot create a scatter for.
Reviewed By: sdesmalen, david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D112725
Add conversion pattern for the `fir.convert` operation.
This patch is part of the upstreaming effort from fir-dev branch.
This patch was previously landed with a truncated version that
was failing the windows buildbot.
Reviewed By: rovka, awarzynski
Differential Revision: https://reviews.llvm.org/D113469
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch fixes an amusing bug where a Platform::Kill operation would
happily terminate a proces on a completely different platform, as long
as they have the same process ID. This was due to the fact that the
implementation was iterating through all known (debugged) processes in
order terminate them directly.
This patch just deletes that logic, and makes everything go through the
OS process termination APIs. While it would be possible to fix the logic
to check for a platform match, it seemed to me that the implementation
was being too smart for its own good -- accessing random Process
objects without knowing anything about their state is risky at best.
Going through the os ensures we avoid any races.
I also "upgrade" the termination signal to a SIGKILL to ensure the
process really dies after this operation.
Differential Revision: https://reviews.llvm.org/D113184