As discussed on llvm-dev in
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117301.html
this changes the command line interface of llvm-dwarfdump to match the
one used by the dwarfdump utility shipping on macOS. In addition to
being shorter to type this format also has the advantage of allowing
more than one section to be specified at the same time.
In a nutshell, with this change
$ llvm-dwarfdump --debug-dump=info
$ llvm-dwarfdump --debug-dump=apple-objc
becomes
$ dwarfdump --debug-info --apple-objc
Differential Revision: https://reviews.llvm.org/D37714
llvm-svn: 312970
Not all targets support the use of absolute symbols to export
constants. In particular, ARM has a wide variety of constant encodings
that cannot currently be relocated by linkers. So instead of exporting
the constants using symbols, export them directly in the summary.
The values of the constants are left as zeroes on targets that support
symbolic exports.
This may result in more cache misses when targeting those architectures
as a result of arbitrary changes in constant values, but this seems
somewhat unavoidable for now.
Differential Revision: https://reviews.llvm.org/D37407
llvm-svn: 312967
Summary:
GEP merging can sometimes increase the number of live values and register
pressure across control edges and cause performance problems particularly if the
increased register pressure results in spills.
This change implements GEP unmerging around an IndirectBr in certain cases to
mitigate the issue. This is in the CodeGenPrepare pass (after all the GEP
merging has happened.)
With this patch, the Python interpreter loop runs faster by ~5%.
Reviewers: sanjoy, hfinkel
Reviewed By: hfinkel
Subscribers: eastig, junbuml, llvm-commits
Differential Revision: https://reviews.llvm.org/D36772
llvm-svn: 312930
These two instructions are normally selected, but when the
two address pass converts mac into mad we end up with the
mad where we could have one of these.
Differential Revision: https://reviews.llvm.org/D37389
llvm-svn: 312928
Summary:
r275950 added support for turning (trunc (X >> N) to i1) into BT(X, N). But that's no longer necessary now that i1 isn't legal.
This patch removes the support for that, but preserves some of the refactorings done in that commit.
Reviewers: guyblank, RKSimon, spatel, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37673
llvm-svn: 312925
forgetLoop() has pretty bad performance because it goes over
the same instructions over and over again in particular when
nested loop are involved.
The refactoring changes the function to a not-recursive function
and reusing the allocation for data-structures and the Visited
set.
NFCI
Differential Revision: https://reviews.llvm.org/D37659
llvm-svn: 312920
Helps improve combineLogicBlendIntoPBLENDV support by allowing us to peek into through PACKSS truncations of vector comparison results.
Differential Revision: https://reviews.llvm.org/D37680
llvm-svn: 312916
A mrt exp with vm=1 must be in exact (non-WQM) mode, as it also exports
the exec mask as the valid mask to determine which pixels to render.
This commit marks any exp as needing to be in exact mode.
Actually, if there are multiple mrt exps, only one needs to have vm=1,
and only that one needs to be in exact mode. But that is an optimization
for another day.
Differential Revision: https://reviews.llvm.org/D36305
llvm-svn: 312915
I'm trying to refactor some shared code for integer div/rem,
but I keep having to scroll through fdiv. The FP ops have
nothing in common with the integer ops, so I'm moving FP
below everything else.
While here, improve a couple of comments and fix some formatting.
llvm-svn: 312913
Also enables '__do_clear_bss'.
These functions are automaticalled called by the CRT if they are
declared.
We need these to be called otherwise RAM will start completely
uninitialised, even though we need to copy RAM variables from progmem to
RAM.
llvm-svn: 312905
This is a preparatory step for D34515 and also is being recommitted as its
first version caused PR34045.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 312898
After the split of the Scatter operation, the order of the new instructions is well defined - Lo goes before Hi. Otherwise the semantic of Scatter (from LSB to MSB) is broken.
I'm chaining 2 nodes to prevent reordering.
Differential Revision https://reviews.llvm.org/D37670
llvm-svn: 312894
This removes some duplicated code and makes it easier to support signed div/rem
in a similar way if we want to do that. Note that the existing comments were not
accurate - we don't need a constant divisor to simplify; icmp simplification does
more than that. But as the added tests show, it could go even further.
llvm-svn: 312885
First step towards making it possible to use the shuffle combines for cases where we don't want to call DCI.CombineTo() with the result.
llvm-svn: 312884
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869
Summary:
Just because INC/DEC is a little slow on some processors doesn't mean we shouldn't prefer it when optimizing for size.
This appears to match gcc behavior.
Reviewers: chandlerc, zvi, RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37177
llvm-svn: 312866
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented
as an independent pass, so there's no stretching of scope and feature creep for an existing pass.
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028
The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.
Decomposing remainder may allow removing some code from the backend (PPC and possibly others).
Differential Revision: https://reviews.llvm.org/D37121
llvm-svn: 312862
Summary:
Once we've done our custom isel for these nodes, I think we should be calling removeDeadNode to prune them out of the DAG. Table driven isel ultimately either calls morphNodeTo which modifies a node and doesn't leave dead nodes. Or it emits new nodes and then calls removeDeadNode as part of Opc_CompleteMatch.
If you run a simple multiply test case like this through llc with -debug you'll see a umul_lohi node get printed as part of the dump for Instruction Selection ends.
```
define i64 @foo(i64 %a, i64 %b) local_unnamed_addr #0 {
entry:
%conv = zext i64 %a to i128
%conv1 = zext i64 %b to i128
%mul = mul nuw nsw i128 %conv1, %conv
%shr = lshr i128 %mul, 64
%conv2 = trunc i128 %shr to i64
ret i64 %conv2
}
```
Reviewers: RKSimon, spatel, zvi, guyblank, niravd
Reviewed By: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37547
llvm-svn: 312857
- Use range based for
- Variable names should start with upper case
- Add `const`
- Change class name to match filename
- Fix doxygen comments
- Use MCPhysReg instead of unsigned
- Use references instead of pointers where things cannot be nullptr
- Misc coding style improvements
llvm-svn: 312846
The lxv/stxv instructions require an offset that is 0 % 16. Previously we were
selecting lxv/stxv for loads and stores to the stack where the offset from the
slot was a multiple of 16, but the stack slot was not 16 or more byte aligned.
When the frame gets lowered these transform to r(1|31) + slot + offset.
If slot is not aligned, slot + offset may not be 0 % 16.
Now we require 16 byte or more alignment for select lxv/stxv to stack slots.
Includes a testcase that shows both sufficiently and insufficiently aligned
stack slots.
llvm-svn: 312843
Fixed an issue in printImm64Operand where if the value is
an expression, print out the expression properly. Currently,
it will print
r1 = <MCOperand Expr:(tx_port)>ll
With the patch, the printout will be
r1 = tx_port
Suggested-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 312833
Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface:
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize ///< Instruction code size.
};
int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const;
All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model.
This patch also provides a simple default implementation of getInstructionLatency.
The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways:
Add more detail into this function.
Add getXXXLatency function and call it from here.
Implement target specific getInstructionLatency function.
Differential Revision: https://reviews.llvm.org/D37170
llvm-svn: 312832
We have a lot of operand definition work essentially producing
every valid permutation of operands to workaround builiding
operand lists based on the instruction features. Apparently tablegen
already has a mostly undocumented operator to concat dags which
simplies this.
Convert one simple place to use this. The BUF instruction definitions
have much more complicated logic that can be totally rewritten now.
llvm-svn: 312822
The various scalar bit operations set SCC,
so one is erased or moved it needs to be recomputed.
Not sure why the existing tests don't fail on this.
llvm-svn: 312819
A coverage segment contains a starting line and column, an execution
count, and some other metadata. Clients of the coverage library use
segments to prepare line-oriented reports.
Users of the coverage library depend on segments being unique and sorted
in source order. Currently this is not guaranteed (this is why the clang
change which introduced deferred regions was reverted).
This commit documents the "unique and sorted" condition and asserts that
it holds. It also fixes the SegmentBuilder so that it produces correct
output in some edge cases.
Testing: I've added unit tests for some edge cases. I've also checked
that the new SegmentBuilder implementation is fully covered. Apart from
running check-profile and the llvm-cov tests, I've successfully used a
stage1 llvm-cov to prepare a coverage report for an instrumented clang
binary.
Differential Revision: https://reviews.llvm.org/D36813
llvm-svn: 312817
Each source region has a start and end location. Report an error when
the end location does not precede the begin location.
The old lineExecutionCounts.covmapping test actually had a buggy source
region in it. This commit introduces a regenerated copy of the coverage
and moves the old copy to malformedRegions.covmapping, for a test.
Differential Revision: https://reviews.llvm.org/D37387
llvm-svn: 312814