We will need to do something like this to support range extension
thunks since that process is iterative.
Doing this also has the advantage that when doing the regular
relocation scan the offset in the output section is known and we can
just store that. This reduces the number of times we have to run
getOffset and I think will allow a more specialized .eh_frame
representation.
By itself this is already a performance win.
firefox
master 7.295045737
patch 7.209466989 0.98826892235
chromium
master 4.531254468
patch 4.509221804 0.995137623774
chromium fast
master 1.836928973
patch 1.823805241 0.992855612714
the gold plugin
master 0.379768791
patch 0.380043405 1.00072310839
clang
master 0.642698284
patch 0.642215663 0.999249070657
llvm-as
master 0.036665467
patch 0.036456225 0.994293213284
the gold plugin fsds
master 0.40395817
patch 0.404384555 1.0010555177
clang fsds
master 0.722045545
patch 0.720946135 0.998477367518
llvm-as fsds
master 0.03292646
patch 0.032759965 0.994943428477
scylla
master 3.427376378
patch 3.368316181 0.98276810292
llvm-svn: 276146
- R_ARM_TLS_LDM32
- R_ARM_TLS_LDO32
The local dynamic implementation and tests follows the same model as
the other ARM TLS models. The R_ARM_TLS_LDO32 is implemented as R_ABS
expr type as the getVA() for a TLS symbol will return the offset from the
start of the TLS block.
Differential Revision https://reviews.llvm.org/D22563
llvm-svn: 276123
Add relocations and identification functions for the Initial Exec
and Global Dynamic TLS model defined in Addenda to, and Errata in,
the ABI for the ARM Architecture.
ARM uses variant 1 of the thread local storage data
structures as defined in ELF Handling for Thread-Local Storage.
The "experimental" descriptor based model that can be selected in
gcc, but not clang with -mtls-dialect=gnu2 is not supported.
The relocations R_ARM_TLS_LE12 and R_ARM_TLS_IE12GP are not
supported, I know of no ARM Toolchain that supports these relocations
as they limit the size of the TLS block.
No code relaxation is supported as the standard ARM TLS model puts
the relocations on literal data.
Support for the local dynamic model will come in a follow up patch.
Differential Revision: https://reviews.llvm.org/D22462
llvm-svn: 276095
r275301 made .got section be aligned on Target->GotEntrySize,
so GotEntrySize must have been initialized. We didn't initialize
it for AMDGPU.
llvm-svn: 275373
Patch by H.J Lu.
For x86-64 psABI, the entry size of .got and .got.plt sections is 8
bytes for both LP64 and ILP32. Add GotEntrySize and GotPltEntrySize
to ELF target instead of using size of ELFT::uint. Now we can generate
a simple working x32 executable.
Differential Revision: http://reviews.llvm.org/D22288
llvm-svn: 275301
Config members are named after corresponding command line options.
This patch renames VAStart ImageBase so that they are in line with
--image-base.
Differential Revision: http://reviews.llvm.org/D22277
llvm-svn: 275298
Patch by H.J. Lu.
As x86-64 psABI supports both LP64 and ILP32, this patch adds <ELFT>
template to X86_64TargetInfo.
Differential Revision: http://reviews.llvm.org/D22287
llvm-svn: 275235
Only MipsThunk were using the function, and the way how it wrote
thunk contents was different from ARM thunks. This patch makes
them consistent.
llvm-svn: 274997
The TinyPtrVector of const Thunk<ELFT>* in InputSections.h can cause
build failures on certain compiler/library combinations when Thunk<ELFT>
is not a complete type or is an abstract class. Fixed by making Thunk<ELFT>
non Abstract.
type or is an abstract class
llvm-svn: 274863
Generalise the Mips LA25 Thunk code and implement ARM and Thumb
interworking Thunks.
- Introduce a new module Thunks.cpp to store the Target Specific Thunk
implementations.
- DefinedRegular and Shared have a ThunkData field to record Thunk.
- A Target can have more than one type of Thunk.
- Support PC-relative calls to Thunks.
- Support Thunks to PLT entries.
- Existing Mips LA25 Thunk code integrated.
- Support for ARMv7A interworking Thunks.
Limitations:
- Only one Thunk per SymbolBody, this is sufficient for all currently
implemented Thunks.
- ARM thunks assume presence of V6T2 MOVT and MOVW instructions.
Differential revision: http://reviews.llvm.org/D21891
llvm-svn: 274836
The patch adds one more partition to the MIPS GOT. This time it is for
TLS related GOT entries. Such entries are located after 'local' and 'global'
ones. We cannot get a final offset for these entries at the time of
creation because we do not know size of 'local' and 'global' partitions.
So we have to adjust the offset later using `getMipsTlsOffset()` method.
All MIPS TLS relocations which need GOT entries operates MIPS style GOT
offset - 'offset from the GOT's beginning' - MipsGPOffset constant. That
is why I add new types of relocation expressions.
One more difference from othe ABIs is that the MIPS ABI does not support
any TLS relocation relaxations. I decided to make a separate function
`handleMipsTlsRelocation` and put MIPS TLS relocation handling code
there. It is similar to `handleTlsRelocation` routine and duplicates its
code. But it allows to make the code cleaner and prevent pollution of
the `handleTlsRelocation` by MIPS 'if' statements.
Differential Revision: http://reviews.llvm.org/D21606
llvm-svn: 273569
`Inst` and `Op` variables are removed since they are not always
point to an instruction nor an operand. For 5-byte MOV instruction,
Op points to an instruction, which is confusing.
llvm-svn: 273246
This patch is to rewrite the function with a table-lookup-ish approach
so that it can read as a series of "convert this pattern to this" pattern.
llvm-svn: 273238
There are two motivations for this patch. The first one is a preparation
for support MIPS TLS relocations. It might sound like a joke but for GOT
entries related to TLS relocations MIPS ABI uses almost regular approach
with creation of dynamic relocations for each GOT enty etc. But we need
to separate these 'regular' TLS related entries from MIPS specific local
and global parts of GOT. ABI declare simple solution - all TLS related
entries allocated at the end of GOT after local/global parts. The second
motivation it to support GOT relocations for non-preemptible symbols
with addends. If we have more than one GOT relocations against symbol S
with different addends we need to create GOT entries for each unique
Symbol/Addend pairs.
So we store all MIPS GOT entries in separate containers. For non-preemptible
symbols we have to maintain two data structures. The first one is MipsLocal
vector. Each entry corresponds to the GOT entry from the 'local' part
of the GOT contains the symbol's address plus addend. The second one
is MipsLocalMap. It is a map from Symbol/Addend pair to the GOT index.
Differential Revision: http://reviews.llvm.org/D21297
llvm-svn: 273127
PltZero (or PLT[0]) was an appropriate name for the little code
we have at beginning of the PLT section when we only supported x86
since the code for x86 just fits in the first PLT slot.
It's not the case anymore. The code for ARM64 occupies first two
slots, so PltZero spans PLT[0] and PLT[1], for example.
This patch renames it to avoid confusion.
llvm-svn: 272913
For ARM and MIPS, we don't need to call this function.
This patch passes a symbol instead of a PLT entry address
so that the target handler can call it if necessary.
llvm-svn: 272910
Add support for the R_ARM_THM relocations used in the objects present
in arm-linux-gnueabihf-gcc. These are:
R_ARM_THM_CALL
R_ARM_THM_JUMP11
R_ARM_THM_JUMP19
R_ARM_THM_JUMP24
R_ARM_THM_MOVT_ABS
R_ARM_THM_MOVW_ABS_NC
Interworking between ARM and Thumb is partially supported with BLX.
The R_ARM_CALL relocation for ARM instructions and R_ARM_THM_CALL
relocation for Thumb instructions will write out a BL or BLX depending
on the state of the Target.
Assumptions:
- Availability of BLX and extended range of Thumb 4-byte Branch
instructions.
- In relocateOne if (Val & 0x1) == 1 target is Thumb, 0 is ARM.
This will hold for objects that comply with the ABI for the
ARM architecture.
This is sufficient for hello world to work with a recent
arm-linux-gnueabihf distribution.
Limitations:
No interworking for R_ARM_JUMP24, R_ARM_THM_JUMP24, R_ARM_THM_JUMP19
and the deprecated R_ARM_PLT32 and R_ARM_PC24 instructions as these
cannot be written out as a BLX and need a state change thunk.
No range extension thunks. The R_ARM_JUMP24 and R_ARM_THM_CALL have a
range of 16Mb
llvm-svn: 272881
Previously message told us that relocations could
not be used when making shared object. That was
correct because message could appear (and it is expected)
when we linked executable.
Message should have being changed to something
that says we can't use a subset of relocations against shared
symbols.
Patch fixes the text.
llvm-svn: 272478