Added a line to `thread trace dump info` results which shows total number of instructions executed until now.
Differential Revision: https://reviews.llvm.org/D122076
Minor fixes needed and now `./bin/lldb-dotest -p TestTrace` passes
correctly.
- There was an incorrect iteration.
- Some error messages changed.
- The way repeat commands are handled changed a bit, so I had to create
a new --continue arg in "thread trace dump instructions" to handle this
correctly.
Differential Revision: https://reviews.llvm.org/D122023
D120762 accidentally moved the interrupt check into the block which was
reading stdio. This meant that a ^C only took effect after a regular
character has been pressed.
This patch fixes that and adds a (pexpect) test.
Differential Revision: https://reviews.llvm.org/D121912
The call is useless, as any modules loaded there will be removed in
ResolveExecutableModule. Modules will be reloaded again through the
GetLoadedModuleList call in DYLDRendezvous.cpp.
MakeLoadImageUtilityFunction() is not using extern "C" for external C functions
and it is not using eLanguageTypeC_plus_plus. So I am modifying it to be consistent.
Also see: rdar://87544782
Differential Revision: https://reviews.llvm.org/D121831
Migrate to using ReportError to report a failure to evaluate a
watchpoint condition. I had already done so for the parallel code for
breakpoints.
In the process, I noticed that I accidentally regressed the error
reporting for breakpoint conditions by dropping the call to
GetDescription. This patch rectifies that and adds a test.
Because the call to GetDescription expects a Stream*, I also switches
from using a raw_string_ostream to a StreamString for both breakpoints
and watchpoints.
- Rename IntelPTManager class and files to IntelPTCollector
- Change GetTimestampCounter API to general trace counter API,
GetCounter
Differential Revision: https://reviews.llvm.org/D121711
Expose diagnostic events through the SB API. Unlike the progress events,
I opted to use a SBStructuredData so that we can add fields in the
future.
Differential revision: https://reviews.llvm.org/D121818
Commit 3251ba2d0f ("[Attr] Fix a btf_type_tag AST generation")
added a new type BTFTagAttributedType to the clang AST type
system. There are a few places in lldb needed to handle this type
similar to Attributed type to avoid compilation warning/error
when 'switch' is used to enumerate all types.
Report warnings and errors through events instead of printing directly
the to the debugger's error stream. By using events, IDEs such as Xcode
can report these issues in the UI instead of having them show up in the
debugger console.
The new diagnostic events are handled by the default event loop. If a
diagnostic is reported while nobody is listening for the new event
types, it is printed directly to the debugger's error stream.
Differential revision: https://reviews.llvm.org/D121511
The log channel was changed from Types to Commands in
a007a6d84471bb956abe10974cac3066799f583f:
- Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_TYPES));
+ Log *log = GetLog(LLDBLog::Process | LLDBLog::Commands);
`UdtRecordCompleter` shouldn't complete static members' types. static members' types are going to be completed when the types are called in `SymbolFile::CompleteType`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121030
Add synchronization to the IOHandler to prevent multiple threads from
writing concurrently to the output or error stream.
A scenario where this could happen is when a thread (the default event
thread for example) is using the debugger's asynchronous stream. We
would delegate this operation to the IOHandler which might be running on
another thread. Until this patch there was nothing to synchronize the
two at the IOHandler level.
Differential revision: https://reviews.llvm.org/D121500
This reverts commit 242c574dc0 because it
breaks the following tests on the bots:
- TestGuiExpandThreadsTree.py
- TestBreakpointCallbackCommandSource.py
Currently DW_OP_deref_size just drops the ValueType::FileAddress case and does
not attempt to handle it. This adds support for this case and a test that
verifies this support.
I did a little refactoring since DW_OP_deref and DW_OP_deref_size have some
overlap in code.
Also see: rdar://66870821
Differential Revision: https://reviews.llvm.org/D121408
Add synchronization to the IOHandler to prevent multiple threads from
writing concurrently to the output or error stream.
A scenario where this could happen is when a thread (the default event
thread for example) is using the debugger's asynchronous stream. We
would delegate this operation to the IOHandler which might be running on
another thread. Until this patch there was nothing to synchronize the
two at the IOHandler level.
Differential revision: https://reviews.llvm.org/D121500
This patch is another attempt to fix platform selection on Apple
Silicon. It partially undoes D117340 which tried to fix the issue by
always instantiating a remote-ios platform for "iPhone and iPad Apps on
Apple Silicon Macs".
While the previous patch worked for attaching, it broke launching and
everything else that expects the remote platform to be connected. I made
an attempt to work around that, but quickly found out that there were
just too may places that had this assumption baked in.
This patch takes a different approach and reverts back to marking the
host platform compatible with iOS triples. This brings us back to the
original situation where platform selection was broken for remote iOS
debugging on Apple Silicon. To fix that, we now look at the process'
host architecture to differentiate between iOS binaries running remotely
and iOS binaries running locally.
I tested the following scenarios, which now all uses the desired
platform:
- Launching an iOS binary on macOS: uses the host platform
- Attaching to an iOS binary on macOS: uses the host platform
- Attaching to a remote iOS binary: uses the remote-ios platform
rdar://89840215
Differential revision: https://reviews.llvm.org/D121444
While working on dde487e547 I noticed that the MacOSX platforms were
in need of some love. This patch cleans up the headers:
- Move platforms into the lldb_private namespace.
- Remove lldb_private:: prefixes to improve readability.
- Fix header includes and use forward declarations (iwyu).
- Fix formatting
They don't require that the memory return address be restored prior to
function exit, so there's no guarantee the value is correct. It's better
to return nothing that something that's not accurate.
Differential Revision: https://reviews.llvm.org/D121348
Applied modernize-use-default-member-init clang-tidy check over LLDB.
It appears in many files we had already switched to in class member init but
never updated the constructors to reflect that. This check is already present in
the lldb/.clang-tidy config.
Differential Revision: https://reviews.llvm.org/D121481
To allow us to select a different platform based on where the process is
running, plumb the process host architecture through platform selection.
This patch is in preparation for D121444 which needs this functionality
to tell apart iOS binaries running on Apple Silicon vs on a remote iOS
device.
Differential revision: https://reviews.llvm.org/D121484
The rest of LLVM uses `print` for the method taking the `raw_ostream`
and `dump` only for the method with no parameters. Use the same for
`RedirectingFileSystem`.
Differential Revision: https://reviews.llvm.org/D121494
Use the debugger's asynchronous output stream for printing progress
events. This allows the active IOHandler to be in charge of printing
them and doing the necessary synchronization.
Differential revision: https://reviews.llvm.org/D121502
PrintAsync is relying on the IOHandler to print to the output/error
stream. In that context it doesn't make much sense that this is using
the debugger's streams rather than the one from the IOHandler.
Differential revision: https://reviews.llvm.org/D121536
Move ProgressEventData out of debugger and into its own file. This is in
preparation of adding a few new type of event data for diagnostics.
Differential revision: https://reviews.llvm.org/D121506
`ReadMemoryFromFileCache` can be called at a high rate, and has fast execution.
Signposts for high rate & brief duration can have a negative impact on tracing;
emitting a high volume signposts can lead to blocking, affecting performance,
and total volume makes human review of the trace harder because of the noise.
Differential Revision: https://reviews.llvm.org/D121226
This patch adds a getter for the process' system architecture. I went
with Process::GetSystemArchitecture to match
Platform::GetSystemArchitecture.
Differential revision: https://reviews.llvm.org/D121443
Don't overwrite the host architecture (obtained from qHostInfo) with the
process info (obtained from qProcessInfo).
Differential revision: https://reviews.llvm.org/D121442
Add support to inspect the ELF headers for RISCV targets to determine if
RVC or RVE are enabled and the floating point support to enable. As per
the RISCV specification, d implies f, q implies d implies f, which gives
us the cascading effect that is used to enable the features when setting
up the disassembler. With this change, it is now possible to attach the
debugger to a remote process and be able to disassemble the instruction
stream.
~~~
$ bin/lldb tmp/reduced
(lldb) target create "reduced"
Current executable set to '/tmp/reduced' (riscv64).
(lldb) gdb-remote localhost:1234
(lldb) Process 5737 stopped
* thread #1, name = 'reduced', stop reason = signal SIGTRAP
frame #0: 0x0000003ff7fe1b20
-> 0x3ff7fe1b20: mv a0, sp
0x3ff7fe1b22: jal 1936
0x3ff7fe1b26: mv s0, a0
0x3ff7fe1b28: auipc a0, 27
~~~
We came to the conclusion that this doesn't matter for VSCode/Xcode
because they don't use the default event loop and that other clients
who might care should use the setting.
Differential revision: https://reviews.llvm.org/D120972
When seeing the extra space in the log, it wasn't clear if there was a missing
printf argument. Removing the extra space removes the potential confusion.
This workaround is the source of an awkwared Process->Platform
dependency. While this could be solved in various ways (the only thing
we really use is the plugin name), it may be better to just remove it --
the workaround was added 10 years ago (43c555dfc), and the affected
debugservers were "old" even then, so hopefully they are not in use
anymore.
Differential Revision: https://reviews.llvm.org/D121305
Most notably, Pass.h is no longer included by TargetMachine.h
before: 1063570306
after: 1063332844
Differential Revision: https://reviews.llvm.org/D121168
Reflow the textual comment which preserves formatted output from
tooling. This makes the content legible again after the lldb source
code was reformatted with automated tooling.
Ensure step-avoid-regexp logs are emitted in the case where the regex has no
capture groups.
Without this change, the log is printed only if the regex has at least one
capture group.
Another change is to the log message: the first capture group has been removed
from the message. There could be zero capture groups, and there could be two or
more capture groups.
Differential Revision: https://reviews.llvm.org/D119298
Add `IsAggregateType` to the SB API.
I'd like to use this from tests, and there are numerous other `Is<X>Type`
predicates on `SBType`.
Differential Revision: https://reviews.llvm.org/D121252
This patch moves the platform creation and selection logic into the
per-debugger platform lists. I've tried to keep functional changes to a
minimum -- the main (only) observable difference in this change is that
APIs, which select a platform by name (e.g.,
Debugger::SetCurrentPlatform) will not automatically pick up a platform
associated with another debugger (or no debugger at all).
I've also added several tests for this functionality -- one of the
pleasant consequences of the debugger isolation is that it is now
possible to test the platform selection and creation logic.
This is a product of the discussion at
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>.
Differential Revision: https://reviews.llvm.org/D120810
Embedded nul characters are still printed, and they don't terminate the
string. See also D111634.
Differential Revision: https://reviews.llvm.org/D120803
This ensures that the user is aware that many commands will not work
correctly.
We print the warning only once (per module) to avoid spamming the user
with potentially thousands of error messages.
Differential Revision: https://reviews.llvm.org/D120892
Add a --exists/-e flag to `settings set` that sets the setting if it
exists, but doesn't print an error otherwise. This is useful for example
when setting options in your ~/.lldbinit that might not exist in older
versions of lldb.
Differential revision: https://reviews.llvm.org/D121155
Of course I only noticed these things *after* landing the original
patch...
- Flush the output after clearing the line.
- Move up the printing the carriage return to avoid duplication.
- Use hexadecimal instead of octal for escape codes.
This got lost while iterating on the patch. We need to always move the
cursor to the front of the line so that if something else
(asynchronously) prints to the debugger's output it overwrites the
progress message.
Add a setting to change how progress is shown in a color enabled
terminal. This follows the existing -prefix, -suffix pattern
that's used elsewhere in lldb.
Differential revision: https://reviews.llvm.org/D121062
This patch adds support for showing progress events when using lldb on
the command line. It spawns a separate thread that listens for progress
events and prints them to the debugger's output stream.
It's nothing fancy (yet), for now it just prints the progress message.
If we know the total number of items being processed, we prefix the
message with something like [1/100], similar to ninja's output.
This patch doesn't use any fancy terminal manipulation: it uses a simple
carriage return (\r) to bring the cursor to the front of the line and
vt100 escape codes to clear the (rest) of the line.
Differential revision: https://reviews.llvm.org/D120972
The old command wrote to CWD, which doesn't always work, and if it
didn't, there was no workaround (and it crashed on failure). This
patch changed the setting to provide a directory to save the objects
to.
Differential Revision: https://reviews.llvm.org/D121036
I'm a big fan of the autosuggestion feature but my terminal/color scheme
doesn't display faint any differently than regular lldb output, which
makes the feature a little confusing. This patch add a setting to change
the autosuggestion ANSI escape codes.
For example, to display the autosuggestion in italic, you can add this
to your ~/.lldbinit
settings set show-autosuggestion-ansi-prefix ${ansi.italic}
setting set show-autosuggestion-ansi-suffix ${ansi.normal}
Differential revision: https://reviews.llvm.org/D121064
This patch introduces a new way to load modules programatically with
Scripted Processes. To do so, the scripted process blueprint holds a
list of dictionary describing the modules to load, which their path or
uuid, load address and eventually a slide offset.
LLDB will fetch that list after launching the ScriptedProcess, and
iterate over each entry to create the module that will be loaded in the
Scripted Process' target.
The patch also refactors the StackCoreScriptedProcess test to stop
inside the `libbaz` module and make sure it's loaded correctly and that
we can fetch some variables from it.
rdar://74520238
Differential Revision: https://reviews.llvm.org/D120969
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch replaces the calls to ErrorWithMessage using the GetInterface
message by a call to the static method directly.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch removes the ability to instantiate the LLDB FileSystem class
with a FileCollector. It keeps the ability to collect files, but uses
the FileCollectorFileSystem to do that transparently.
Because the two are intertwined, this patch also removes the
finalization logic which copied the files over out of process.
1) Make the BreakpointEventData::Dump actually do something useful.
2) Make the Breakpoint events print when the break log channel is on
without having to turn on the events channel.
Differential Revision: https://reviews.llvm.org/D120917
This patch removes the ability to instantiate the LLDB FileSystem class
based on a VFS overlay. This also removes the "hack" where we cast the
VFS to a RedirectingFileSystem to obtain the external path. You can
still instantiate a FileSystem with a VFS, but with the caveat that
operations that rely on the external path won't work.
Differential revision: https://reviews.llvm.org/D120923
We have using namespace llvm::dwarf in dwarf.h header globally. Replacing that
with a using namespace within lldb_private::dwarf and moving to a
using namespace lldb_private::dwarf in .cpp files and fully qualified names
in the few header files.
Differential Revision: https://reviews.llvm.org/D120836
This reverts commit 6b3b3ef344.
Jim Ingham informed me that the upper case is a hint to the option
name, like you might see in a menu to show you what the shortcut is.
There are two DataExtractors in scope: one from the llvm namespace and
one from the lldb_private namespace. Some Microsoft Visual C++ compilers
(I tested with MSVC 14.23 specifically) cannot handle this situation,
and generate ambiguous symbol errors. This change fixes this compile
error.
Differential revision: https://reviews.llvm.org/D120718
This patch fixes a data race in IOHandlerProcessSTDIO. The race is
happens between the main thread and the event handling thread. The main
thread is running the IOHandler (IOHandlerProcessSTDIO::Run()) when an
event comes in that makes us pop the process IO handler which involves
cancelling the IOHandler (IOHandlerProcessSTDIO::Cancel). The latter
calls SetIsDone(true) which modifies m_is_done. At the same time, we
have the main thread reading the variable through GetIsDone().
This patch avoids the race by using a mutex to synchronize the two
threads. On the event thread, in IOHandlerProcessSTDIO ::Cancel method,
we obtain the lock before changing the value of m_is_done. On the main
thread, in IOHandlerProcessSTDIO::Run(), we obtain the lock before
reading the value of m_is_done. Additionally, we delay calling SetIsDone
until after the loop exists, to avoid a potential race between the two
writes.
Write of size 1 at 0x00010b66bb68 by thread T7 (mutexes: write M2862, write M718324145051843688):
#0 lldb_private::IOHandler::SetIsDone(bool) IOHandler.h:90 (liblldb.15.0.0git.dylib:arm64+0x971d84)
#1 IOHandlerProcessSTDIO::Cancel() Process.cpp:4382 (liblldb.15.0.0git.dylib:arm64+0x5ddfec)
#2 lldb_private::Debugger::PopIOHandler(std::__1::shared_ptr<lldb_private::IOHandler> const&) Debugger.cpp:1156 (liblldb.15.0.0git.dylib:arm64+0x3cb2a8)
#3 lldb_private::Debugger::RemoveIOHandler(std::__1::shared_ptr<lldb_private::IOHandler> const&) Debugger.cpp:1063 (liblldb.15.0.0git.dylib:arm64+0x3cbd2c)
#4 lldb_private::Process::PopProcessIOHandler() Process.cpp:4487 (liblldb.15.0.0git.dylib:arm64+0x5c583c)
#5 lldb_private::Debugger::HandleProcessEvent(std::__1::shared_ptr<lldb_private::Event> const&) Debugger.cpp:1549 (liblldb.15.0.0git.dylib:arm64+0x3ceabc)
#6 lldb_private::Debugger::DefaultEventHandler() Debugger.cpp:1622 (liblldb.15.0.0git.dylib:arm64+0x3cf2c0)
#7 std::__1::__function::__func<lldb_private::Debugger::StartEventHandlerThread()::$_2, std::__1::allocator<lldb_private::Debugger::StartEventHandlerThread()::$_2>, void* ()>::operator()() function.h:352 (liblldb.15.0.0git.dylib:arm64+0x3d1bd8)
#8 lldb_private::HostNativeThreadBase::ThreadCreateTrampoline(void*) HostNativeThreadBase.cpp:62 (liblldb.15.0.0git.dylib:arm64+0x4c71ac)
#9 lldb_private::HostThreadMacOSX::ThreadCreateTrampoline(void*) HostThreadMacOSX.mm:18 (liblldb.15.0.0git.dylib:arm64+0x29ef544)
Previous read of size 1 at 0x00010b66bb68 by main thread:
#0 lldb_private::IOHandler::GetIsDone() IOHandler.h:92 (liblldb.15.0.0git.dylib:arm64+0x971db8)
#1 IOHandlerProcessSTDIO::Run() Process.cpp:4339 (liblldb.15.0.0git.dylib:arm64+0x5ddc7c)
#2 lldb_private::Debugger::RunIOHandlers() Debugger.cpp:982 (liblldb.15.0.0git.dylib:arm64+0x3cb48c)
#3 lldb_private::CommandInterpreter::RunCommandInterpreter(lldb_private::CommandInterpreterRunOptions&) CommandInterpreter.cpp:3298 (liblldb.15.0.0git.dylib:arm64+0x506478)
#4 lldb::SBDebugger::RunCommandInterpreter(bool, bool) SBDebugger.cpp:1166 (liblldb.15.0.0git.dylib:arm64+0x53604)
#5 Driver::MainLoop() Driver.cpp:634 (lldb:arm64+0x100006294)
#6 main Driver.cpp:853 (lldb:arm64+0x100007344)
Differential revision: https://reviews.llvm.org/D120762
This allows `image lookup -a ... -v` to print variables only if the given
address is covered by the valid ranges of the variables. Since variables created
in dwarf plugin always has empty scope range, print the variable if it has
empty scope.
Differential Revision: https://reviews.llvm.org/D119963
This patch changes the return value of Platform::GetName() to a
StringRef, and uses the opportunity (compile errors) to change some
callsites to use GetPluginName() instead. The two methods still remain
hardwired to return the same thing, but this will change once the ideas
in
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>
are implemented.
Differential Revision: https://reviews.llvm.org/D119146
SetValueFromCString and SetData methods return false if register can't
be written but they don't set a error message. It sometimes confuses
callers of these methods because they try to get the error message in case of
failure but Status::AsCString returns nullptr.
For example, lldb-vscode crashes due to this bug if some register can't
be written. It invokes SBError::GetCString in case of error and doesn't
check whether the result is nullptr (see request_setVariable implementation in
lldb-vscode.cpp for more info).
Reviewed By: labath, clayborg
Differential Revision: https://reviews.llvm.org/D120319
This checks `m_fs` before dereferencing it to access its`isLocal` method.
rdar://67410058
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch relands commit 3e3e79a9e4, and
fixes the memory sanitizer issue described in D120284, by removing the
output arguments from the LLDB_INSTRUMENT_VA invocation.
Differential Revision: https://reviews.llvm.org/D120599
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Instead of checking whether TARGET_OS_IPHONE is set to 1, the current
code just check the existence of TARGET_OS_IPHONE, which either always
succeeds or always fails, depending on whether you have
TargetConditionals.h included.
In the changes Jonas made in https://reviews.llvm.org/D117340 , a
small oversight was that PlatformMacOSX (despite the name) is active
for any native Darwin operating system, where lldb and the target
process are running on the same system. This patch uses compile-time
checks to return the appropriate OSType for the OS lldb is being
compiled to, so the "host" platform will correctly be selected when
lldb & the inferior are both running on that OS. And a small change
to PlatformMacOSX::GetSupportedArchitectures which adds additional
recognized triples when running on macOS but not other native Darwin
systems.
Differential Revision: https://reviews.llvm.org/D120517
rdar://89247060
All current callers set the argument to false. monitor_signals=true used
to be used in the Process plugins (which needed to know when the
debugged process gets a signal), but this implementation has several
serious issues, which means that individual process plugins now
orchestrate the monitoring of debugged processes themselves.
This allows us to simplify the implementation (no need to play with
process groups), and the interface (we only catch fatal events, so the
callback is always called just once).
Differential Revision: https://reviews.llvm.org/D120425
Jim noticed that the regex command is unintentionally recursive. Let's
use the following command regex as an example:
(lldb) com regex humm 's/([^ ]+) ([^ ]+)/p %1 %2 %1 %2/'
If we call it with arguments foo bar, thing behave as expected:
(lldb) humm foo bar
(...)
foo bar foo bar
However, if we include %2 in the arguments, things break down:
(lldb) humm fo%2o bar
(...)
fobaro bar fobaro bar
The problem is that the implementation of the substitution is too naive.
It substitutes the %1 token into the target template in place, then does
the %2 substitution starting with the resultant string. So if the
previous substitution introduced a %2 token, it would get processed in
the second sweep, etc.
This patch addresses the issue by walking the command once and
substituting the % variables in place.
(lldb) humm fo%2o bar
(...)
fo%2o bar fo%2o bar
Furthermore, this patch also reports an error if not enough variables
were provided and add support for substituting %0.
rdar://81236994
Differential revision: https://reviews.llvm.org/D120101
The class is using an incredibly elaborate setup to create and destroy
an NSAutoreleasePool object. We can do it in a much simpler way by
making those calls inside our thread startup function.
The only effect of this patch is that the pool gets released at the end
of the ThreadCreateTrampoline function, instead of slightly later, when
pthreads begin thread-specific cleanup. However, the key destruction
order is unspecified, so nothing should be relying on that.
I didn't find a specific reason for why this would have to be done that
way in git history. It seems that before D5198, this was thread-specific
keys were the only way an os implementation (in Host::ThreadCreated)
could attach some value to a thread.
Differential Revision: https://reviews.llvm.org/D120322
Accept a function object instead of a raw pointer. This avoids a bunch
of boilerplate typically needed to pass arguments to the thread
functions.
Differential Revision: https://reviews.llvm.org/D120321
The race is between these two pieces of code that are executed in two separate
lldb-vscode threads (the first is in the main thread and another is in the
event-handling thread):
```
// lldb-vscode.cpp
g_vsc.debugger.SetAsync(false);
g_vsc.target.Launch(launch_info, error);
g_vsc.debugger.SetAsync(true);
```
```
// Target.cpp
bool old_async = debugger.GetAsyncExecution();
debugger.SetAsyncExecution(true);
debugger.GetCommandInterpreter().HandleCommands(GetCommands(), exc_ctx,
options, result);
debugger.SetAsyncExecution(old_async);
```
The sequence that leads to the bug is this one:
1. Main thread enables synchronous mode and launches the process.
2. When the process is launched, it generates the first stop event.
3. This stop event is catched by the event-handling thread and DoOnRemoval
is invoked.
4. Inside DoOnRemoval, this thread runs stop hooks. And before running stop
hooks, the current synchronization mode is stored into old_async (and
right now it is equal to "false").
5. The main thread finishes the launch and returns to lldb-vscode, the
synchronization mode is restored to asynchronous by lldb-vscode.
6. Event-handling thread finishes stop hooks processing and restores the
synchronization mode according to old_async (i.e. makes the mode synchronous)
7. And now the mode is synchronous while lldb-vscode expects it to be
asynchronous. Synchronous mode forbids the process to broadcast public stop
events, so, VS Code just hangs because lldb-vscode doesn't notify it about
stops.
So, this diff makes the target intercept the first stop event if the process is
launched in the synchronous mode, thus preventing stop hooks execution.
The bug is only present on Windows because other platforms already
intercept this event using their own hijacking listeners.
So, this diff also fixes some problems with lldb-vscode tests on Windows to make
it possible to run the related test. Other tests still can't be enabled because
the debugged program prints something into stdout and LLDB can't intercept this
output and redirect it to lldb-vscode properly.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D119548
In C++20 modules imports must be together and at the start of the module.
Rather than growing more ad-hoc flags to test state, this keeps track of the
phase of of a valid module TU (first decl, global module frag, module,
private module frag). If the phasing is broken (with some diagnostic) the
pattern does not conform to a valid C++20 module, and we set the state
accordingly.
We can thus issue diagnostics when imports appear in the wrong places and
decouple the C++20 modules state from other module variants (modules-ts and
clang modules). Additionally, we attempt to diagnose wrong imports before
trying to find the module where possible (the latter will generally emit an
unhelpful diagnostic about the module not being available).
Although this generally simplifies the handling of C++20 module import
diagnostics, the motivation was that, in particular, it allows detecting
invalid imports like:
import module A;
int some_decl();
import module B;
where being in a module purview is insufficient to identify them.
Differential Revision: https://reviews.llvm.org/D118893
This patch adds introduces a new kind of an lldbinit file. Unlike the
lldbinit in the home directory (useful for customizing lldb to the needs
of a particular user), or the cwd lldbinit file (useful for
project-specific settings), this file can be used to customize an entire
lldb installation to a particular environment.
The feature is enabled at build time, by setting the
LLDB_GLOBAL_INIT_DIRECTORY variable to a path to a directory which
should contain an "lldbinit" file. Lldb will then load the file at
startup, if it exists, and if automatic init loading has not been
disabled. Relative paths will be resolved (at runtime) relative to the
location of the lldb library (liblldb or LLDB.framework).
The system-wide lldbinit file will be loaded first, before any
$HOME/.lldbinit and $CWD/.lldbinit files are processed, so that those
can override any system-wide settings.
More information can be found on the RFC thread at
<https://discourse.llvm.org/t/rfc-system-wide-lldbinit/59933>.
Differential Revision: https://reviews.llvm.org/D119831
Identifiers with __ anywhere are reserved. I picked this up via the
bugprone-reserved-identifier clang-tidy check but -Wreserved-identifier will
also flag these uses as well.
Differential Revision: https://reviews.llvm.org/D119915
This patch introduces a new type of ScriptedProcess: CrashLogScriptedProcess.
It takes advantage of lldb's crashlog parsers and Scripted Processes to
reconstruct a static debugging session with symbolicated stackframes, instead
of just dumping out everything in the user's terminal.
The crashlog command also has an interactive mode that only provide a
very limited experience. This is why this patch removes all the logic
for this interactive mode and creates CrashLogScriptedProcess instead.
This will fetch and load all the libraries that were used by the crashed
thread and re-create all the frames artificially.
rdar://88721117
Differential Revision: https://reviews.llvm.org/D119501
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds the ability for the user to check if the command
interpreter's IOHandler is interactive.
Differential Revision: https://reviews.llvm.org/D119499
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds the ability for ScriptedThread to load artificial stack
frames. To do so, the interpreter instance can create a list that will
contain the frame index and its pc address.
Then, when the Scripted Process plugin stops, it will refresh its
Scripted Threads state by invalidating their register context and load
to list from the interpreter object and reconstruct each frame.
This patch also removes all of the default implementation for
`get_stackframes` from the derived ScriptedThread classes, and add the
interface code for the Scripted Thread Interface.
rdar://88721095
Differential Revision: https://reviews.llvm.org/D119388
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
- Use an early return.
- Check for error.Fail() instead of !error.Success().
- Check the resolver pointer before using instead of relying on the
error being set.
D115300 added Rust as a new PDB language type.
This change allows LLDB to recognize the new language type.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D119044
I was looking at Stream::PutRawBytes and thought I spotted a bug because
both loops are using `i < src_len` as the loop condition despite them
iterating in opposite directions.
On closer inspection, the existing code is correct, because it relies on
well-defined unsigned integer wrapping. Correct doesn't mean readable,
so this patch changes the loop condition to compare against 0 when
decrementing i while still covering the edge case of src_len potentially
being 0 itself.
Differential revision: https://reviews.llvm.org/D119857
Don't resize DataBufferHeap if the newly requested size exceeds the
capacity of the underlying data structure, i.e. std::vector<uint8_t>.
This matches the existing check in the DataBufferHeap constructor.
As usual with that header cleanup series, some implicit dependencies now need to
be explicit:
llvm/DebugInfo/DWARF/DWARFContext.h no longer includes:
- "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
- "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
- "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
- "llvm/DebugInfo/DWARF/DWARFDebugAranges.h"
- "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
- "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
- "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
- "llvm/DebugInfo/DWARF/DWARFGdbIndex.h"
- "llvm/DebugInfo/DWARF/DWARFSection.h"
- "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
- "llvm/DebugInfo/DWARF/DWARFUnitIndex.h"
Plus llvm/Support/Errc.h not included by a bunch of llvm/DebugInfo/DWARF/DWARF*.h files
Preprocessed lines to build llvm on my setup:
after: 1065629059
before: 1066621848
Which is a great diff!
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119723
Some dyld cross library stubs can have line information but no function. Make sure you
check that you have a valid Function object before asking it questions.
Differential Revision: https://reviews.llvm.org/D119297
This way if you have a long stack, you can issue "thread backtrace --count 10"
and then subsequent <Return>-s will page you through the stack.
This took a little more effort than just adding the repeat command, since
the GetRepeatCommand API was returning a "const char *". That meant the command
had to keep the repeat string alive, which is inconvenient. The original
API returned either a nullptr, or a const char *, so I changed the private API to
return an llvm::Optional<std::string>. Most of the patch is propagating that change.
Also, there was a little thinko in fetching the repeat command. We don't
fetch repeat commands for commands that aren't being added to history, which
is in general reasonable. And we don't add repeat commands to the history -
also reasonable. But we do want the repeat command to be able to generate
the NEXT repeat command. So I adjusted the logic in HandleCommand to work
that way.
Differential Revision: https://reviews.llvm.org/D119046
ObjectFileMachO, for a couple of special binaries at the initial
launch, needs to find segment load addresses before the Target's
SectionLoadList has been initialized. The calculation to find
the first segment, which is at the same address as the mach header,
was not correct if the binary was in the Darwin shared cache.
Update the logic to handle that case.
Differential Revision: https://reviews.llvm.org/D119602
rdar://88802629
Recently we observed high memory pressure caused by clang during some parallel builds.
We discovered that we have several projects that have a large number of #define directives
in their TUs (on the order of millions), which caused huge memory consumption in clang due
to a lot of allocations for MacroInfo. We would like to reduce the memory overhead of
clang for a single #define to reduce the memory overhead for these files, to allow us to
reduce the memory pressure on the system during highly parallel builds. This change achieves
that by removing the SmallVector in MacroInfo and instead storing the tokens in an array
allocated using the bump pointer allocator, after all tokens are lexed.
The added unit test with 1000000 #define directives illustrates the problem. Prior to this
change, on arm64 macOS, clang's PP bump pointer allocator allocated 272007616 bytes, and
used roughly 272 bytes per #define. After this change, clang's PP bump pointer allocator
allocates 120002016 bytes, and uses only roughly 120 bytes per #define.
For an example test file that we have internally with 7.8 million #define directives, this
change produces the following improvement on arm64 macOS: Persistent allocation footprint for
this test case file as it's being compiled to LLVM IR went down 22% from 5.28 GB to 4.07 GB
and the total allocations went down 14% from 8.26 GB to 7.05 GB. Furthermore, this change
reduced the total number of allocations made by the system for this clang invocation from
1454853 to 133663, an order of magnitude improvement.
The recommit fixes the LLDB build failure.
Differential Revision: https://reviews.llvm.org/D117348
This mainly affects Darwin targets (macOS, iOS, tvOS and watchOS) when these targets don't use dSYM files and the debug info was in the .o files. All modules, including the .o files that are loaded by the debug maps, were in the global module list. This was great because it allows us to see each .o file and how much it contributes. There were virtual functions on the SymbolFile class to fetch the symtab/debug info parse and index times, and also the total debug info size. So the main executable would add all of the .o file's stats together and report them as its own data. Then the "totalDebugInfoSize" and many other "totalXXX" top level totals were all being added together. This stems from the fact that my original patch only emitted the modules for a target at the start of the patch, but as comments from the reviews came in, we switched to emitting all of the modules from the global module list.
So this patch fixes it so when we have a SymbolFileDWARFDebugMap that loads .o files, the main executable will have no debug info size or symtab/debug info parse/index times, but each .o file will have its own data as a separate module. Also, to be able to tell when/if we have a dSYM file I have added a "symbolFilePath" if the SymbolFile for the main modules path doesn't match that of the main executable. We also include a "symbolFileModuleIdentifiers" key in each module if the module does have multiple lldb_private::Module objects that contain debug info so that you can track down the information for a module and add up the contributions of all of the .o files.
Tests were added that are labeled with @skipUnlessDarwin and @no_debug_info_test that test all of this functionality so it doesn't regress.
For a module with a dSYM file, we can see the "symbolFilePath" is included:
```
"modules": [
{
"debugInfoByteSize": 1070,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 0,
"identifier": 4873280600,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_dsym_binary_has_symfile_in_stats/a.out",
"symbolFilePath": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_dsym_binary_has_symfile_in_stats/a.out.dSYM/Contents/Resources/DWARF/a.out",
"symbolTableIndexTime": 7.9999999999999996e-06,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 7.8999999999999996e-05,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx12.0.0",
"uuid": "E1F7D85B-3A42-321E-BF0D-29B103F5F2E3"
},
```
And for the DWARF in .o file case we can see the "symbolFileModuleIdentifiers" in the executable's module stats:
```
"modules": [
{
"debugInfoByteSize": 0,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 0,
"identifier": 4603526968,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_no_dsym_binary_has_symfile_identifiers_in_stats/a.out",
"symbolFileModuleIdentifiers": [
4604429832
],
"symbolTableIndexTime": 7.9999999999999996e-06,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 0.000112,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx12.0.0",
"uuid": "57008BF5-A726-3DE9-B1BF-3A9AD3EE8569"
},
```
And the .o file for 4604429832 looks like:
```
{
"debugInfoByteSize": 1028,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 6.0999999999999999e-05,
"identifier": 4604429832,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_no_dsym_binary_has_symfile_identifiers_in_stats/main.o",
"symbolTableIndexTime": 0,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 0,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx"
}
```
Differential Revision: https://reviews.llvm.org/D119400
This reverts commit 0df522969a.
Additional checks are added to fix the detection of the last memory region
in GetMemoryRegions or repeating the "memory region" command when the
target has non-address bits.
Normally you keep reading from address 0, looking up each region's end
address until you get LLDB_INVALID_ADDR as the region end address.
(0xffffffffffffffff)
This is what the remote will return once you go beyond the last mapped region:
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0001000000000000-0xffffffffffffffff) ---
Problem is that when we "fix" the lookup address, we remove some bits
from it. On an AArch64 system we have 48 bit virtual addresses, so when
we fix the end address of the [stack] region the result is 0.
So we loop back to the start.
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0000000000000000-0x0000000000400000) ---
To fix this I added an additional check for the last range.
If the end address of the region is different once you apply
FixDataAddress, we are at the last region.
Since the end of the last region will be the last valid mappable
address, plus 1. That 1 will be removed by the ABI plugin.
The only side effect is that on systems with non-address bits, you
won't get that last catch all unmapped region from the max virtual
address up to 0xf...f.
[0x0000fffff8000000-0x0000fffffffdf000) ---
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
<ends here>
Though in some way this is more correct because that region is not
just unmapped, it's not mappable at all.
No extra testing is needed because this is already covered by
TestMemoryRegion.py, I simply forgot to run it on system that had
both top byte ignore and pointer authentication.
This change has been tested on a qemu VM with top byte ignore,
memory tagging and pointer authentication enabled.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D115508
Operands to `getelementptr` can be constants or constant expressions. Check
that all operands can be constant-resolved and resolve them during the
evaluation. If some operands can't be resolved as constants -- the expression
evaluation will fallback to JIT.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=52449
Reviewed By: #lldb, shafik
Differential Revision: https://reviews.llvm.org/D113498
Major user-facing changes:
Many headers in llvm/DebugInfo/CodeView no longer include
llvm/Support/BinaryStreamReader.h or llvm/Support/BinaryStreamWriter.h,
those headers may need to be included manually.
Several headers in llvm/DebugInfo/CodeView no longer include
llvm/DebugInfo/CodeView/EnumTables.h or llvm/DebugInfo/CodeView/CodeView.h,
those headers may need to be included manually.
Some statistics:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/DebugInfo/CodeView/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
after: 2794466
before: 2832765
Discourse thread on the topic: https://discourse.llvm.org/t/include-what-you-use-include-cleanup/
Differential Revision: https://reviews.llvm.org/D119092
When LLVM_ENABLE_ZLIB is ON gdb-remote should link against ZLIB::ZLIB.
This fixes
```
/mnt/b/yoe/master/build/tmp/hosttools/ld: lib/liblldbPluginProcessGDBRemote.a(GDBRemoteCommunication.cpp.o): in function `lldb_private::process_gdb_remote::GDBRemoteCommunication::DecompressPacket() [clone .localalias]':
GDBRemoteCommunication.cpp:(.text._ZN12lldb_private18process_gdb_remote22GDBRemoteCommunication16DecompressPacketEv+0x59a): undefined reference to `inflateInit2_'
/mnt/b/yoe/master/build/tmp/hosttools/ld: GDBRemoteCommunication.cpp:(.text._ZN12lldb_private18process_gdb_remote22GDBRemoteCommunication16DecompressPacketEv+0x5af): undefined reference to `inflate'
```
Reviewed By: JDevlieghere, MaskRay
Differential Revision: https://reviews.llvm.org/D119186
After aed965d we no longer demangle full symbol names while indexing the
symbol table which means we have to use the mangled name instead of the
demangled name to find the symbol for __asan::AsanDie().
This fixes the following two tests:
lldb-api :: functionalities/asan/TestMemoryHistory.py
lldb-api :: functionalities/asan/TestReportData.py
iOS systems are getting near this limit; double itfrom a 150kb
buffer to a 300kb buffer, which is freed after processing the
list of classes.
rdar://88454594
Differential Revision: https://reviews.llvm.org/D118972
The symbol table needs to demangle all symbol names when building its
index. However, this doesn't require the full mangled name: we only need
the base name and the function declaration context. Currently, we always
construct the demangled string during indexing and cache it in the
string pool as a way to speed up future lookups.
Constructing the demangled string is by far the most expensive step of
the demangling process, because the output string can be exponentially
larger than the input and unless you're dumping the symbol table, many
of those demangled names will not be needed again.
This patch avoids constructing the full demangled string when we can
partially demangle. This speeds up indexing and reduces memory usage.
I gathered some numbers by attaching to Slack:
Before
------
Memory usage: 280MB
Benchmark 1: ./bin/lldb -n Slack -o quit
Time (mean ± σ): 4.829 s ± 0.518 s [User: 4.012 s, System: 0.208 s]
Range (min … max): 4.624 s … 6.294 s 10 runs
After
-----
Memory usage: 189MB
Benchmark 1: ./bin/lldb -n Slack -o quit
Time (mean ± σ): 4.182 s ± 0.025 s [User: 3.536 s, System: 0.192 s]
Range (min … max): 4.152 s … 4.233 s 10 runs
Differential revision: https://reviews.llvm.org/D118814
Have the different ::Parse.* methods return the demangled string
directly instead of having to go through ::GetBufferRef.
Differential revision: https://reviews.llvm.org/D118953
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
ClangUserExpression.h is relying on the forward declaration of
ClangExpressionParser in ClangFunctionCaller.h. This patch moves the
forward declaration to ClangUserExpression.h.
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
This means sve2 is enabled by default and the v8.8 mops (memcpy
and memset acceleration instructions) and HBC (hinted conditional
branch) extensions can be disassembled.
v9.3-a is equivalent to v8.8-a except that in v9.0-a sve2 was
enabled by default so v9.3-a includes that too.
MTE remains an optional extension, only enabled for specific CPUs.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D118358
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
Support synthesizing the siginfo_t type from the Platform plugin.
This type is going to be used by LLDB client to process the raw siginfo
data received from lldb-server without the necessity of relying
on target's debug info being present.
Differential Revision: https://reviews.llvm.org/D117707
Currently, running the test suite with LLVM_ENABLE_EXPENSIVE_CHECKS=On
causes a couple of tests to fail. This happens because they expect a
certain order of variables (all of them happen to use the "target
variable" command, but other lookup functions should suffer from the
same issues), all of which have the same name. Sort algorithms often
preserve the order of equivalent elements (in this case the entries in
the NameToDIE map), but that not guaranteed, and
LLVM_ENABLE_EXPENSIVE_CHECKS stresses that by pre-shuffling all inputs
before sorting.
While this could easily be fixed by relaxing the test expectations,
having a deterministic output seems like a worthwhile goal,
particularly, as this could have bigger consequences than just a
different print order -- in some cases we just pick the first entry that
we find, whatever that is. Therefore this patch makes the sort
deterministic by introducing another sort key -- UniqueCString::Sort
gets a value comparator functor, which can be used to sort elements with
the same name -- in the DWARF case we use DIERef::operator<, which
roughly equals the order in which the entries appear in the debug info,
and matches the current "accidental" order.
Using a extra functor seemed preferable to using stable_sort, as the
latter allocates extra O(n) of temporary memory.
I observed no difference in debug info parsing speed with this patch
applied.
Differential Revision: https://reviews.llvm.org/D118251
This patch introduces a new SBAPI method: `SBModule::IsFileBacked`
As the name suggests, it tells the user if the module's object file is
on disk or in memory.
rdar://68538278
Differential Revision: https://reviews.llvm.org/D118261
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Remove ConstString::StaticMemorySize as it is unused and superseded by
GetMemoryStats. It is referenced in a bunch of doc comments but I don't
really understand why. My best guess it that the comments were
copy-pasted from ConstString::MemorySize() even though it didn't make
sense there either. The implementation of StaticMemorySize was being
called on the MemoryPool, not on the ConstString itself.
Differential revision: https://reviews.llvm.org/D118091
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
This adds an option --show-tags to "memory read".
(lldb) memory read mte_buf mte_buf+32 -f "x" -s8 --show-tags
0x900fffff7ff8000: 0x0000000000000000 0x0000000000000000 (tag: 0x0)
0x900fffff7ff8010: 0x0000000000000000 0x0000000000000000 (tag: 0x1)
Tags are printed on the end of each line, if that
line has any tags associated with it. Meaning that
untagged memory output is unchanged.
Tags are printed based on the granule(s) of memory that
a line covers. So you may have lines with 1 tag, with many
tags, no tags or partially tagged lines.
In the case of partially tagged lines, untagged granules
will show "<no tag>" so that the ordering is obvious.
For example, a line that covers 2 granules where the first
is not tagged:
(lldb) memory read mte_buf-16 mte_buf+16 -l32 -f"x" --show-tags
0x900fffff7ff7ff0: 0x00000000 <...> (tags: <no tag> 0x0)
Untagged lines will just not have the "(tags: ..." at all.
Though they may be part of a larger output that does have
some tagged lines.
To do this I've extended DumpDataExtractor to also print
memory tags where it has a valid execution context and
is asked to print them.
There are no special alignment requirements, simply
use "memory read" as usual. All alignment is handled
in DumpDataExtractor.
We use MakeTaggedRanges to find all the tagged memory
in the current dump, then read all that into a MemoryTagMap.
The tag map is populated once in DumpDataExtractor and re-used
for each subsequently printed line (or recursive call of
DumpDataExtractor, which some formats do).
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D107140
The tag map holds a sparse set of memory tags and allows
you to query ranges for tags.
Granules that do not have tags will be set to llvm::None.
to keep the ordering intact. If there are no tags for the
requested range we'll just return an empty result so that
callers don't need to check that all values are llvm::None.
This will be combined with MemoryTagManager's MakeTaggedRanges:
* MakeTaggedRanges
* Read from all those ranges
* Insert the results into the tag map
* Give the tag map to whatever needs to print tags
Which in this case will be "memory read"/DumpDataExtractor.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D112825
This is to be used when you want to know what subranges
of a larger range have memory tagging. Like MakeTaggedRange
but memory without tags is skipped and you get a list of ranges back.
Will be used later by DumpDataExtractor to show memory tags.
MakeTaggedRanges assumes that the memory regions it is
given are sorted in ascending order and do not overlap.
For the current use case where you get regions from
GetMemoryRegions and are on some Linux like OS, this is
reasonable to assume.
I've used asserts to check those conditions. In future
any API binding will check them up front to prevent a crash.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D112824
This patch makes use of c++ type checking and scoped enums to make
logging statements shorter and harder to misuse.
Defines like LIBLLDB_LOG_PROCESS are replaces with LLDBLog::Process.
Because it now carries type information we do not need to worry about
matching a specific enum value with the right getter function -- the
compiler will now do that for us.
The main entry point for the logging machinery becomes the GetLog
(template) function, which will obtain the correct Log object based on
the enum type. It achieves this through another template function
(LogChannelFor<T>), which must be specialized for each type, and should
return the appropriate channel object.
This patch also removes the ability to log a message if multiple
categories are enabled simultaneously as it was unused and confusing.
This patch does not actually remove any of the existing interfaces. The
defines and log retrieval functions are left around as wrappers around
the new interfaces. They will be removed in follow-up patch.
Differential Revision: https://reviews.llvm.org/D117490
I considered keeping this change strictly downstream. Since we still
have a bunch of places that check for Python 2, I figured it doesn't
harm to land it upstream and avoid the conflict when I eventually do
remove them (hopefully soon!).
Add statistics about the memory usage of the string pool. I'm
particularly interested in the memory used by the allocator, i.e. the
number of bytes actually used by the allocator it self as well as the
number of bytes allocated through the allocator.
Differential revision: https://reviews.llvm.org/D117914
This patch changes the `ScriptedInterface::ErrorWithMessage` method to
make it `static` which makes it easier to call.
The patch also updates its various call sites to reflect this change.
Differential Revision: https://reviews.llvm.org/D117374
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
When listing all the Scripted Threads of a ScriptedProcess, we can see that all
have the thread index set to 1. This is caused by the lldb_private::Thread
constructor, which sets the m_index_id member using the provided thread id `tid`.
Because the call to the super constructor is done before instantiating
the `ScriptedThreadInterface`, lldb can't fetch the thread id from the
script instance, so it uses `LLDB_INVALID_THREAD_ID` instead.
To mitigate this, this patch takes advantage of the `ScriptedThread::Create`
fallible constructor idiom to defer calling the `ScriptedThread` constructor
(and the `Thread` super constructor with it), until we can fetch a valid
thread id `tid` from the `ScriptedThreadInterface`.
rdar://87432065
Differential Revision: https://reviews.llvm.org/D117076
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds Exceptions to the list of supported stop reasons for
Scripted Threads.
The main motivation for this is that breakpoints are triggered as a
special exception class on ARM platforms, so adding it as a stop reason
allows the ScriptedProcess to selected the ScriptedThread that stopped at
a breakpoint (or crashed :p).
rdar://87430376
Differential Revision: https://reviews.llvm.org/D117074
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds support of multiple Scripted Threads in a ScriptedProcess.
This is done by fetching the Scripted Threads info dictionary at every
ScriptedProcess::DoUpdateThreadList and iterate over each element to
create a new ScriptedThread using the object instance, if it was not
already available.
This patch also adds the ability to pass a pointer of a script interpreter
object instance to initialize a ScriptedInterface instead of having to call
the script object initializer in the ScriptedInterface constructor.
This is used to instantiate the ScriptedThreadInterface from the
ScriptedThread constructor, to be able to perform call on that script
interpreter object instance.
Finally, the patch also updates the scripted process test to check for
multiple threads.
rdar://84507704
Differential Revision: https://reviews.llvm.org/D117071
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Since we can have multiple Scripted Threads per Scripted Process, having
only a single ScriptedThreadInterface (with a single object instance)
will cause the method calls to be done on the wrong object.
Instead, this patch creates a separate ScriptedThreadInterface for each
new lldb_private::ScriptedThread to make sure we interact with the right
instance.
rdar://87427911
Differential Revision: https://reviews.llvm.org/D117070
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new method to the Scripted Process interface to
retrive a dictionary of Scripted Threads. It uses the thread ID as a key
and the Scripted Thread instance as the value.
This dictionary will be used to create Scripted Threads in lldb and
perform calls to the python scripted thread object.
rdar://87427126
Differential Revision: https://reviews.llvm.org/D117068
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This removes the non-address bits before we try to use
the addresses.
Meaning that when results are shown, those results won't
show non-address bits either. This follows what "memory read"
has done. On the grounds that non-address bits are a property
of a pointer, not the memory pointed to.
I've added testing and merged the find and read tests into one
file.
Note that there are no API side changes because "memory find"
does not have an equivalent API call.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117299
Allow users to create aliases for aliases to raw input commands. That probably
sounds convoluted, so here's an example:
```
command alias some-setup env SOMEVAR=SOMEVALUE
```
This an alias based on `env`, which itself is an alias for `_regex-env`.
`_regex-env` is a `command regex` command, which takes raw input.
The above `some-setup` alias fails with:
```
error: Unable to create requested alias.
```
This change allows such aliases to be created. lldb already supports aliases to
aliases for parsed commands.
Differential Revision: https://reviews.llvm.org/D117259
The logic of `g_quiet` was inverted in D26243. This corrects the issue.
Without this, running `log timers enable` produces a high volume of incremental
timer output.
Differential Revision: https://reviews.llvm.org/D117837
The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
Instrument the SB API with signposts on Darwin. This gives us a time
profile on whose behalf LLDB spends time (particularly when run via the
SBAPI from an IDE).
Differential revision: https://reviews.llvm.org/D117632
Remove the last remaining references to the reproducers from the
instrumentation. This patch renames the relevant files and macros.
Differential revision: https://reviews.llvm.org/D117712
This patch works around what looks like a bug in Clang itself.
The error on the bot is:
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/40466/consoleText
In module 'LLVM_Utils' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/lldb/source/Plugins/ScriptInterpreter/Python/lldb-python.h:18:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Support/Error.h:720:3: error: 'llvm::Expected<bool>::(anonymous)' from module 'LLVM_Utils.Support.Error' is not present in definition of 'llvm::Expected<bool>' in module 'LLVM_Utils.Support.Error'
union {
^
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Support/Error.h:720:3: note: declaration of '' does not match
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Support/Error.h:720:3: note: declaration of '' does not match
1 error generated.
The intention is to revert this as soon as a proper fix has been identified!
rdar://87845391
Although the memory tag commands use a memory tag manager to handle
addresses, that only removes the top byte.
That top byte is 4 bits of memory tag and 4 free bits, which is more
than it should strictly remove but that's how it is for now.
There are other non-address bit uses like pointer authentication.
To ensure the memory tag manager only has to deal with memory tags,
use the ABI plugin to remove the rest.
The tag access test has been updated to sign all the relevant pointers
and require that we're running on a system with pointer authentication
in addition to memory tagging.
The pointers will look like:
<4 bit user tag><4 bit memory tag><signature><bit virtual address>
Note that there is currently no API for reading memory tags. It will
also have to consider this when it arrives.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117672
This better describes the intent of the method. Which for AArch64
is removing the top byte which includes the memory tags.
It does not include pointer signatures, for those we need to use
the ABI plugin. The rename makes this a little more clear.
It's a bit awkward that the memory tag manager is removing the whole
top byte not just the memory tags but it's an improvement for now.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117671
We got a few crash reports that showed LLDB initializing Python on two
separate threads. Make sure Python is initialized exactly once.
rdar://87287005
Differential revision: https://reviews.llvm.org/D117601
std::chrono::duration types are not thread-safe, and they cannot be
concurrently updated from multiple threads. Currently, we were doing
such a thing (only) in the DWARF indexing code
(DWARFUnit::ExtractDIEsRWLocked), but I think it can easily happen that
someone else tries to update another statistic like this without
bothering to check for thread safety.
This patch changes the StatsDuration type from a simple typedef into a
class in its own right. The class stores the duration internally as
std::atomic<uint64_t> (so it can be updated atomically), but presents it
to its users as the usual chrono type (duration<float>).
Differential Revision: https://reviews.llvm.org/D117474
It complements the existing SBDebugger::SetCurrentPlatformSDKRoot and
allows one to set the sysroot of a platform without making it current.
Differential Revision: https://reviews.llvm.org/D117550
This macro was being used to select the proper import/export annotations
on SB classes. Non-windows clients do not have such requirements.
Instead introduce a new macro (LLDB_IN_LIBLLDB), which signals that
we're compiling liblldb itself (and should use dllexport). The default
(no macro) is to use dllimport. I've moved the macro definition to
SBDefines.h, since it only makes sense when building the API library.
Differential Revision: https://reviews.llvm.org/D117564
Use libobjc.A.dylib as a sentinel to detect situations where we're
reading libraries from process memory instead of the shared cache.
Differential revision: https://reviews.llvm.org/D117623
Return our PythonObject wrappers instead of raw PyObjects (obfuscated as
void *). This ensures that ownership (reference counts) of python
objects is automatically tracked.
Differential Revision: https://reviews.llvm.org/D117462
Provide minimal register definition defaults for working with servers
that implement neither target.xml nor qRegisterInfo packets. This is
useful e.g. when interacting with FreeBSD's kernel minimal gdbserver
that does not send target.xml but uses the same layout for its supported
register subset as GDB.
The prerequisite for this is the ability to determine the correct
architecture, e.g. from the target executable.
Differential Revision: https://reviews.llvm.org/D116896
The GIL must be held when calling any Python C API functions. In multithreaded applications that use callbacks this requirement can easily be violated by accident. A general tool to ensure GIL health is not available, but patching Python Py_INCREF to add an assert provides a basic health check:
```
+int PyGILState_Check(void); /* Include/internal/pystate.h */
+
#define Py_INCREF(op) ( \
+ assert(PyGILState_Check()), \
_Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
((PyObject *)(op))->ob_refcnt++)
#define Py_DECREF(op) \
do { \
+ assert(PyGILState_Check()); \
PyObject *_py_decref_tmp = (PyObject *)(op); \
if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
--(_py_decref_tmp)->ob_refcnt != 0) \
```
Adding this assertion causes around 50 test failures in LLDB. Adjusting the scope of things guarded by `py_lock` fixes them.
More background: https://docs.python.org/3/glossary.html#term-global-interpreter-lock
Patch by Ralf Grosse-Kunstleve
Differential Revision: https://reviews.llvm.org/D114722
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
Recommitting after D116901 and D116863.
(cherry picked from commit 2c7d10c412)
This also removes the corresponding unit tests. I wrote them to sanity
check my original refactoring and checked them in because why not. The
current implementation, without the added complexity of indices, is
simple enough that we can do without it.
Currently, when connecting to a remote iOS device from the command line
on Apple Silicon, we end up using the host platform (PlatfromMacOSX)
instead of remote-ios (PlatformRemoteiOS). This happens because
PlatfromMacOSX includes arm64-apple-ios and arm64e-apple-ios as
compatible architectures, presumably to support debugging iOS Apps on
Apple Silicon [1].
This is a problem for debugging remote ios devices, because the host
platform doesn't look for an expanded shared cache on disk and as a
result we end up reading everything from memory, incurring a significant
performance hit.
The crux of this patch is to make PlatfromMacOSX *not* compatible with
arm64(e)-apple-ios. This also means that we now use remote-ios
(PlatformRemoteiOS) as the platform for debugging iOS apps on Apple
Silicon. This has the (unintended) side effect that unlike we do for the
host platform, we no longer check our local shared cache, and incur a
performance hit on debugging these apps.
To avoid that, PlatformRemoteiOS now also check the local cache to
support this use case, which is cheap enough to do unconditionally for
PlatformRemoteiOS.
[1] https://support.apple.com/guide/app-store/iphone-ipad-apps-mac-apple-silicon-fird2c7092da/mac
Differential revision: https://reviews.llvm.org/D117340
When LLDB receives a SIGINT while running the embedded Python REPL it
currently just crashes in ScriptInterpreterPythonImpl::Interrupt with an
error such as the one below:
Fatal Python error: PyThreadState_Get: the function must be called
with the GIL held, but the GIL is released (the current Python thread
state is NULL)
The faulty code that causes this error is this part of
ScriptInterpreterPythonImpl::Interrupt:
PyThreadState *state = PyThreadState_GET();
if (!state)
state = GetThreadState();
if (state) {
long tid = state->thread_id;
PyThreadState_Swap(state);
int num_threads = PyThreadState_SetAsyncExc(tid, PyExc_KeyboardInterrupt);
The obvious fix I tried is to just acquire the GIL before this code is
running which fixes the crash but the KeyboardInterrupt we want to raise
immediately is actually just queued and would only be raised once the
next line of input has been parsed (which e.g. won't interrupt Python
code that is currently waiting on a timer or IO from what I can see).
Also none of the functions we call here is marked as safe to be called
from a signal handler from what I can see, so we might still end up
crashing here with some bad timing.
Python 3.2 introduced PyErr_SetInterrupt to solve this and the function
takes care of all the details and avoids doing anything that isn't safe
to do inside a signal handler. The only thing we need to do is to
manually setup our own fake SIGINT handler that behaves the same way as
the standalone Python REPL signal handler (which raises a
KeyboardInterrupt).
From what I understand the old code used to work with Python 2 so I kept
the old code around until we officially drop support for Python 2.
There is a small gap here with Python 3.0->3.1 where we might still be
crashing, but those versions have reached their EOL more than a decade
ago so I think we don't need to bother about them.
Differential revision: https://reviews.llvm.org/D104886
Implement the qXfer:siginfo:read that is used to read the siginfo_t
(extended signal information) for the current thread. This is currently
implemented on FreeBSD and Linux.
Differential Revision: https://reviews.llvm.org/D117113
Set the current thread ID to the thread where an event happened.
As a result, e.g. when a signal is delivered to a thread other than
the first one, the respective T packet refers to the signaled thread
rather than the first thread (with no stop reason). While this doesn't
strictly make a difference to the LLDB client, it is the expected
behavior.
Differential Revision: https://reviews.llvm.org/D117103
"shell" is an alias to "platform shell -h --". Previously you would get this
help text:
(lldb) help shell
Run a shell command on the host. Expects 'raw' input (see 'help raw-input'.)
Syntax: shell <shell-command>
Command Options Usage:
'shell' is an abbreviation for 'platform shell -h --'
Since the code doesn't handle the base command having options
but the alias removing them. With these changes you get:
(lldb) help shell
Run a shell command on the host. Expects 'raw' input (see 'help raw-input'.)
Syntax: shell <shell-command>
'shell' is an abbreviation for 'platform shell -h --'
Note that we already handle a non-alias command having no options,
for example "quit":
(lldb) help quit
Quit the LLDB debugger.
Syntax: quit [exit-code]
Reviewed By: JDevlieghere, jingham
Differential Revision: https://reviews.llvm.org/D117004
This adds inline function support to NativePDB by parsing S_INLINESITE records
to retrieve inlinee line info and add them into line table at `ParseLineTable`.
Differential Revision: https://reviews.llvm.org/D116845
Several of the comments were annotating the wrong argument.
I caught this while reviewing this clean-up: 8afcfbfb8f
which was changing booleans to use true and false and in the this case the comment and the type looked mismatched.
Differential Revision: https://reviews.llvm.org/D116982
Addresses on AArch64 can have top byte tags, memory tags and pointer
authentication signatures in the upper bits.
While testing memory tagging I found that memory read couldn't
read a range if the two addresses had different tags. The same
could apply to signed pointers given the right circumstance.
(lldb) memory read mte_buf_alt_tag mte_buf+16
error: end address (0x900fffff7ff8010) must be greater than the start
address (0xa00fffff7ff8000).
Or it would try to read a lot more memory than expected.
(lldb) memory read mte_buf mte_buf_alt_tag+16
error: Normally, 'memory read' will not read over 1024 bytes of data.
error: Please use --force to override this restriction just once.
error: or set target.max-memory-read-size if you will often need a
larger limit.
Fix this by removing non address bits before we calculate the read
range. A test is added for AArch64 Linux that confirms this by using
the top byte ignore feature.
This means that if you do read with a tagged pointer the output
does not include those tags. This is potentially confusing but I think
overall it's better that we don't pretend that we're reading memory
from a range that the process is unable to map.
(lldb) p ptr1
(char *) $4 = 0x3400fffffffff140 "\x80\xf1\xff\xff\xff\xff"
(lldb) p ptr2
(char *) $5 = 0x5600fffffffff140 "\x80\xf1\xff\xff\xff\xff"
(lldb) memory read ptr1 ptr2+16
0xfffffffff140: 80 f1 ff ff ff ff 00 00 38 70 bc f7 ff ff 00 00 ........8p......
Reviewed By: omjavaid, danielkiss
Differential Revision: https://reviews.llvm.org/D103626
Previously we would persist the flags indicating whether the remote side
supports a particular feature across reconnects, which is obviously not
a good idea.
I implement the clearing by nuking (its the only way to be sure :) the
entire GDBRemoteCommunication object in the disconnect operation and
creating a new one upon connection. This allows us to maintain a nice
invariant that the GDBRemoteCommunication object (which is now a
pointer) exists only if it is connected. The downside to that is that a
lot of functions now needs to check the validity of the pointer instead
of blindly accessing the object.
The process communication does not suffer from the same issue because we
always destroy the entire Process object for a relaunch.
Differential Revision: https://reviews.llvm.org/D116539
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
(cherry picked from commit 2c7d10c412)
Fixes incomplete command names in `apropos` results.
The full command names given by `apropos` have come from command name string
literals given to `CommandObject` constructors. For most commands, this has
been accurate, but some commands have incorrect strings. This results in
`apropos` output that doesn't tell the user the full command name they might
want learn more about. These strings can be fixed.
There's a seperate issue that can't be fixed as easily: plugin commands. With
the way they're implemented, plugin commands have to exclude the root command
from their command name string. To illustrate, the `language objc` subcommand
has to set its command name string to "objc", which results in apropos printing
results as `objc ...` instead of `language objc ...`.
To fix both of these issues, this commit changes `FindCommandsForApropos` to
derive the fully qualified command name using the keys of subcommand maps.
Differential Revision: https://reviews.llvm.org/D116491
(cherry picked from commit b3bfd595a5)
Simplify getting the length of `NSPathStore2` strings.
`NSStringSummaryProvider` uses a single field from `NSPathStore2` instances,
its first ivar: `_lengthAndRefCount`. This change uses
`GetSyntheticChildAtOffset` to replace the use of `ProcessStructReader`, and
removes the hard coded `CompilerType` definition of `NSPathStore2`.
Differential Revision: https://reviews.llvm.org/D116461
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
Both close and closesocket should return 0 on success so using !! looks incorrect. I replaced this will a more readable == 0 check.
Differential Revision: https://reviews.llvm.org/D116768
When printing a std::string_view, print the referenced string as the
summary. Support string_view, u32string_view, u16string_view and
wstring_view, as we do for std::string and friends.
This is based on the existing fomratter for std::string, and just
extracts the data and length members, pushing them through the existing
string formatter.
In testing this, a "FIXME" was corrected for printing of non-ASCII empty
values. Previously, the "u", 'U" etc. prefixes were not printed for
basic_string<> types that were not char. This is trivial to resolve by
printing the prefix before the "".
Differential revision: https://reviews.llvm.org/D112222
Fixes incomplete command names in `apropos` results.
The full command names given by `apropos` have come from command name string
literals given to `CommandObject` constructors. For most commands, this has
been accurate, but some commands have incorrect strings. This results in
`apropos` output that doesn't tell the user the full command name they might
want learn more about. These strings can be fixed.
There's a seperate issue that can't be fixed as easily: plugin commands. With
the way they're implemented, plugin commands have to exclude the root command
from their command name string. To illustrate, the `language objc` subcommand
has to set its command name string to "objc", which results in apropos printing
results as `objc ...` instead of `language objc ...`.
To fix both of these issues, this commit changes `FindCommandsForApropos` to
derive the fully qualified command name using the keys of subcommand maps.
Differential Revision: https://reviews.llvm.org/D116491
Include the complete list of threads of all running processes
in the FreeBSDKernel plugin. This makes it possible to inspect
the states (including partial register dumps from PCB) of all kernel
and userspace threads at the time of crash, or at the time of reading
/dev/mem first.
Differential Revision: https://reviews.llvm.org/D116255
The current help for `frame variable` is somewhat long. Its length, combined
with the few aliases (`var`, `v`, and `vo`) can make the output of `apropos`
redundant and noisy.
This separates out the details into a separate long help.
Differential Revision: https://reviews.llvm.org/D116708
Until the introduction of the C++ REPL, there was always a single REPL
language. Several places relied on this assumption through
repl_languages.GetSingularLanguage. Now that this is no longer the case,
we need a way to specify a selected/preferred REPL language. This patch
does that with the help of a debugger property, taking inspiration from
how we store the scripting language.
Differential revision: https://reviews.llvm.org/D116697
This reverts commit 640beb38e7.
That commit caused performance degradtion in Quicksilver test QS:sGPU and a functional test failure in (rocPRIM rocprim.device_segmented_radix_sort).
Reverting until we have a better solution to s_cselect_b64 codegen cleanup
Change-Id: Ibf8e397df94001f248fba609f072088a46abae08
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D115960
Change-Id: Id169459ce4dfffa857d5645a0af50b0063ce1105
D116372, while fixing one kind of a race, ended up creating a new one.
The new issue could occur when one inferior thread exits while another
thread initiates termination of the entire process (exit_group(2)).
With some bad luck, we could start processing the exit notification
(PTRACE_EVENT_EXIT) only to have the become unresponsive (ESRCH) in the
middle of the MonitorCallback function. This function would then delete
the thread from our list even though it wasn't completely dead (it stays
zombified until we read the WIFEXITED event). The linux kernel will not
deliver the exited event for the entire process until we process
individual thread exits.
In a pre-D116372 world, this wouldn't be a problem because we would read
this event (even though we would not know what to do with it) with
waitpid(-1). Now, when we issue invididual waitpids, this event will
never be picked up, and we end up hanging.
The fix for this is actually quite simple -- don't delete the thread in
this situation. The thread will be deleted when the WIFEXITED event
comes.
This situation was kind of already tested by
TestCreateDuringInstructionStep (which is how I found this problem), but
it was mostly accidental, so I am also creating a dedicated test which
reproduces this situation.
This allows access type be printed when running `lldb-test -dump-ast` and
`lldb-test -dump-clang-ast`.
Differential Revision: https://reviews.llvm.org/D115062
Implementation is based on the "expected type" as used for
designated-initializers in braced init lists. This means it can deduce the type
in some cases where it's not written:
void foo(Widget);
foo({ /*help here*/ });
Only basic constructor calls are in scope of this patch, excluded are:
- aggregate initialization (no help is offered for aggregates)
- initializer_list initialization (no help is offered for these constructors)
Fixes https://github.com/clangd/clangd/issues/306
Differential Revision: https://reviews.llvm.org/D116317
Both serve the same purpose (finding shared libraries) and allow one to
launch a dynamically linked executable by just specifying the platform
sysroot.
The lldb-server code is currently set up in a way that each
NativeProcess instance does its own waitpid handling. This works fine
for BSDs, where the code can do a waitpid(process_id), and get
information for all threads in that process.
The situation is trickier on linux, because waitpid(pid) will only
return information for the main thread of the process (one whose tid ==
pid). For this reason the linux code does a waitpid(-1), to get
information for all threads. This was fine while we were supporting just
a single process, but becomes a problem when we have multiple processes
as they end up stealing each others events.
There are two possible solutions to this problem:
- call waitpid(-1) centrally, and then dispatch the events to the
appropriate process
- have each process call waitpid(tid) for all the threads it manages
This patch implements the second approach. Besides fitting better into
the existing design, it also has the added benefit of ensuring
predictable ordering for thread/process creation events (which come in
pairs -- one for the parent and one for the child). The first approach
OTOH, would make this ordering even more complicated since we would
have to keep the half-threads hanging in mid-air until we find the
process we should attach them to.
The downside to this approach is an increased number of syscalls (one
waitpid for each thread), but I think we're pretty far from optimizing
things like this, and so the cleanliness of the design is worth it.
The included test reproduces the circumstances which should demonstrate
the bug (which manifests as a hung test), but I have not been able to
get it to fail. The only place I've seen this failure modes are very
rare hangs in the thread sanitizer tests (tsan forks an addr2line
process to produce its error messages).
Differential Revision: https://reviews.llvm.org/D116372
This is a re-submission of 24d2405588
without the hunks in HostNativeThreadBase.{h,cpp}, which break builds
on Windows.
Identified with modernize-use-nullptr.
This reverts commit 913457acf0.
It again broke builds on Windows:
lldb/source/Host/common/HostNativeThreadBase.cpp(37,14): error:
assigning to 'lldb::thread_result_t' (aka 'unsigned int') from
incompatible type 'std::nullptr_t'
This is a re-submission of 24d2405588
without the hunk in HostNativeThreadBase.h, which breaks builds on
Windows.
Identified with modernize-use-nullptr.
This reverts commit 24d2405588.
Breaks building on Windows:
../../lldb/include\lldb/Host/HostNativeThreadBase.h(49,36): error:
cannot initialize a member subobject of type 'lldb::thread_result_t'
(aka 'unsigned int') with an rvalue of type 'std::nullptr_t'
lldb::thread_result_t m_result = nullptr;
^~~~~~~
1 error generated.
This small patch adds two useful improvements:
- allows one to specify the emulator path as a bare filename, and have
it be looked up in the PATH
- allows one to leave the path empty and have the filename be derived
from the architecture.
The MonitorCallback function was assuming that the "exited" argument is
set whenever a thread exits, but the caller was only setting that flag
for the main thread.
This patch deletes the argument altogether, and lets MonitorCallback
compute what it needs itself.
This is almost NFC, since previously we would end up in the
"GetSignalInfo failed for unknown reasons" branch, which was doing the
same thing -- forgetting about the thread.
Remove the Mangled::operator! and Mangled::operator void* where the
comments in header and implementation files disagree and replace them
with operator bool.
This fix PR52702 as https://reviews.llvm.org/D106837 used the buggy
Mangled::operator! in Symbol::SynthesizeNameIfNeeded. For example,
consider the symbol "puts" in a hello world C program:
// Inside Symbol::SynthesizeNameIfNeeded
(lldb) p m_mangled
(lldb_private::Mangled) $0 = (m_mangled = None, m_demangled = "puts")
(lldb) p !m_mangled
(bool) $1 = true # should be false!!
This leads to Symbol::SynthesizeNameIfNeeded overwriting m_demangled
part of Mangled (in this case "puts").
In conclusion, this patch turns
callq 0x401030 ; symbol stub for: ___lldb_unnamed_symbol36
back into
callq 0x401030 ; symbol stub for: puts .
Differential Revision: https://reviews.llvm.org/D116217
Multithreaded applications using fork(2) need to be extra careful about
what they do in the fork child. Without any special precautions (which
only really work if you can fully control all threads) they can only
safely call async-signal-safe functions. This is because the forked
child will contain snapshot of the parents memory at a random moment in
the execution of all of the non-forking threads (this is where the
similarity with signals comes in).
For example, the other threads could have been holding locks that can
now never be released in the child process and any attempt to obtain
them would block. This is what sometimes happen when using tcmalloc --
our fork child ends up hanging in the memory allocation routine. It is
also what happened with our logging code, which is why we added a
pthread_atfork hackaround.
This patch implements a proper fix to the problem, by which is to make
the child code async-signal-safe. The ProcessLaunchInfo structure is
transformed into a simpler ForkLaunchInfo representation, one which can
be read without allocating memory and invoking complex library
functions.
Strictly speaking this implementation is not async-signal-safe, as it
still invokes library functions outside of the posix-blessed set of
entry points. Strictly adhering to the spec would mean reimplementing a
lot of the functionality in pure C, so instead I rely on the fact that
any reasonable implementation of some functions (e.g.,
basic_string::c_str()) will not start allocating memory or doing other
unsafe things.
The new child code does not call into our logging infrastructure, which
enables us to remove the pthread_atfork call from there.
Differential Revision: https://reviews.llvm.org/D116165
When we switched options over to use the Options.td file, a bug was introduced that caused the "-g" option for "settings set" to require a filename arguemnt. This patch fixes this issue and adds a test so this doesn't regress.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D116012
This patch add the ability to cache the manual DWARF indexing results to disk for faster subsequent debug sessions. Manual DWARF indexing is time consuming and causes all DWARF to be fully parsed and indexed each time you debug a binary that doesn't have an acceptable accelerator table. Acceptable accelerator tables include .debug_names in DWARF5 or Apple accelerator tables.
This patch breaks up testing by testing all of the encoding and decoding of required C++ objects in a gtest unit test, and then has a test to verify the debug info cache is generated correctly.
This patch also adds the ability to track when a symbol table or DWARF index is loaded or saved to the cache in the "statistics dump" command. This is essential to know in statistics as it can help explain why a debug session was slower or faster than expected.
Reviewed By: labath, wallace
Differential Revision: https://reviews.llvm.org/D115951
Support three new keys in the qProcessInfo response from the remote
gdb stub to handle the case of attaching to a core running some type
of standalone/firmware code and the stub knows the UUID and load
address-or-slide for the binary. There will be no proper DynamicLoader
plugin in this scenario, but we can try to locate and load the binary
into lldb at the correct offset.
Differential Revision: https://reviews.llvm.org/D116211
rdar://75191077
Introduce initial support for using libkvm on FreeBSD. The library
can be used as an alternate implementation for processing kernel
coredumps but it can also be used to access live kernel memory through
specifying "/dev/mem" as the core file, i.e.:
lldb --core /dev/mem /boot/kernel/kernel
Differential Revision: https://reviews.llvm.org/D116005
This finishes the GetSupportedArchitectureAtIndex migration. There are
opportunities to simplify this even further, but I am going to leave
that to the platform owners.
Differential Revision: https://reviews.llvm.org/D116028
Version 2 of 'main bin spec' LC_NOTE allows for the specification
of a slide of where the binary is loaded in the corefile virtual
address space. It also adds a (currently unused) platform field
for the main binary.
Some corefile creators will only have a UUID and an offset to be
applied to the binary.
Changed TestFirmwareCorefiles.py to test this new form of
'main bin spec' with a slide, and also to run on both x86_64
and arm64 macOS systems.
Differential Revision: https://reviews.llvm.org/D116094
rdar://85938455
This reverts commit cc56c66f27.
Fixed a bad assertion, the target of a UsingShadowDecl must not have
*local* qualifiers, but it can be a typedef whose underlying type is qualified.
Currently there's no way to find the UsingDecl that a typeloc found its
underlying type through. Compare to DeclRefExpr::getFoundDecl().
Design decisions:
- a sugar type, as there are many contexts this type of use may appear in
- UsingType is a leaf like TypedefType, the underlying type has no TypeLoc
- not unified with UnresolvedUsingType: a single name is appealing,
but being sometimes-sugar is often fiddly.
- not unified with TypedefType: the UsingShadowDecl is not a TypedefNameDecl or
even a TypeDecl, and users think of these differently.
- does not cover other rarer aliases like objc @compatibility_alias,
in order to be have a concrete API that's easy to understand.
- implicitly desugared by the hasDeclaration ASTMatcher, to avoid
breaking existing patterns and following the precedent of ElaboratedType.
Scope:
- This does not cover types associated with template names introduced by
using declarations. A future patch should introduce a sugar TemplateName
variant for this. (CTAD deduced types fall under this)
- There are enough AST matchers to fix the in-tree clang-tidy tests and
probably any other matchers, though more may be useful later.
Caveats:
- This changes a fairly common pattern in the AST people may depend on matching.
Previously, typeLoc(loc(recordType())) matched whether a struct was
referred to by its original scope or introduced via using-decl.
Now, the using-decl case is not matched, and needs a separate matcher.
This is similar to the case of typedefs but nevertheless both adds
complexity and breaks existing code.
Differential Revision: https://reviews.llvm.org/D114251
This starts to fix the other half of the lifetime problems in this code
-- dangling references. SB objects created on the stack will go away
when the function returns, which is a problem if the python code they
were meant for stashes a reference to them somewhere. Most of the time
this goes by unnoticed, as the code rarely has a reason to store these,
but in case it does, we shouldn't respond by crashing.
This patch fixes the management for a couple of SB objects (Debugger,
Frame, Thread). The SB objects are now created on the heap, and
their ownership is immediately passed on to SWIG, which will ensure they
are destroyed when the last python reference goes away. I will handle
the other objects in separate patches.
I include one test which demonstrates the lifetime issue for SBDebugger.
Strictly speaking, one should create a test case for each of these
objects and each of the contexts they are being used. That would require
figuring out how to persist (and later access) each of these objects.
Some of those may involve a lot of hoop-jumping (we can run python code
from within a frame-format string). I don't think that is
necessary/worth it since the new wrapper functions make it very hard to
get this wrong.
Differential Revision: https://reviews.llvm.org/D115925
This setting is for variables we want to pass to the emulator only --
then will be automatically removed from the target environment by our
environment diffing code. This variable can be used to pass various
QEMU_*** variables (although most of these can be passed through
emulator-args as well), as well as any other variables that can affect
the operation of the emulator (e.g. LD_LIBRARY_PATH).
They were being applied too narrowly (they didn't cover signed char *,
for instance), and too broadly (they covered SomeTemplate<char[6]>) at
the same time.
Differential Revision: https://reviews.llvm.org/D112709
This is an updated version of the https://reviews.llvm.org/D113789 patch with the following changes:
- We no longer modify modification times of the cache files
- Use LLVM caching and cache pruning instead of making a new cache mechanism (See DataFileCache.h/.cpp)
- Add signature to start of each file since we are not using modification times so we can tell when caches are stale and remove and re-create the cache file as files are changed
- Add settings to control the cache size, disk percentage and expiration in days to keep cache size under control
This patch enables symbol tables to be cached in the LLDB index cache directory. All cache files are in a single directory and the files use unique names to ensure that files from the same path will re-use the same file as files get modified. This means as files change, their cache files will be deleted and updated. The modification time of each of the cache files is not modified so that access based pruning of the cache can be implemented.
The symbol table cache files start with a signature that uniquely identifies a file on disk and contains one or more of the following items:
- object file UUID if available
- object file mod time if available
- object name for BSD archive .o files that are in .a files if available
If none of these signature items are available, then the file will not be cached. This keeps temporary object files from expressions from being cached.
When the cache files are loaded on subsequent debug sessions, the signature is compare and if the file has been modified (uuid changes, mod time changes, or object file mod time changes) then the cache file is deleted and re-created.
Module caching must be enabled by the user before this can be used:
symbols.enable-lldb-index-cache (boolean) = false
(lldb) settings set symbols.enable-lldb-index-cache true
There is also a setting that allows the user to specify a module cache directory that defaults to a directory that defaults to being next to the symbols.clang-modules-cache-path directory in a temp directory:
(lldb) settings show symbols.lldb-index-cache-path
/var/folders/9p/472sr0c55l9b20x2zg36b91h0000gn/C/lldb/IndexCache
If this setting is enabled, the finalized symbol tables will be serialized and saved to disc so they can be quickly loaded next time you debug.
Each module can cache one or more files in the index cache directory. The cache file names must be unique to a file on disk and its architecture and object name for .o files in BSD archives. This allows universal mach-o files to support caching multuple architectures in the same module cache directory. Making the file based on the this info allows this cache file to be deleted and replaced when the file gets updated on disk. This keeps the cache from growing over time during the compile/edit/debug cycle and prevents out of space issues.
If the cache is enabled, the symbol table will be loaded from the cache the next time you debug if the module has not changed.
The cache also has settings to control the size of the cache on disk. Each time LLDB starts up with the index cache enable, the cache will be pruned to ensure it stays within the user defined settings:
(lldb) settings set symbols.lldb-index-cache-expiration-days <days>
A value of zero will disable cache files from expiring when the cache is pruned. The default value is 7 currently.
(lldb) settings set symbols.lldb-index-cache-max-byte-size <size>
A value of zero will disable pruning based on a total byte size. The default value is zero currently.
(lldb) settings set symbols.lldb-index-cache-max-percent <percentage-of-disk-space>
A value of 100 will allow the disc to be filled to the max, a value of zero will disable percentage pruning. The default value is zero.
Reviewed By: labath, wallace
Differential Revision: https://reviews.llvm.org/D115324
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
Currently, we'll try to instantiate a ClangREPL for every known
language. The plugin manager already knows what languages it supports,
so rely on that to only instantiate a REPL when we know the requested
language is supported.
rdar://86439474
Differential revision: https://reviews.llvm.org/D115698
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
Add lldb support for a Mach-O "load binary" LC_NOTE which provides
a UUID, load address/slide, and possibly a name of a binary that
should be loaded when examining the core.
struct load_binary
{
uint32_t version; // currently 1
uuid_t uuid; // all zeroes if uuid not specified
uint64_t load_address; // virtual address where the macho is loaded, UINT64_MAX if unavail
uint64_t slide; // slide to be applied to file address to get load address, 0 if unavail
char name_cstring[]; // must be nul-byte terminated c-string, '\0' alone if name unavail
} __attribute__((packed));
Differential Revision: https://reviews.llvm.org/D115494
rdar://85069250
StructuredDataImpl ownership semantics is unclear at best. Various
structures were holding a non-owning pointer to it, with a comment that
the object is owned somewhere else. From what I was able to gather that
"somewhere else" was the SBStructuredData object, but I am not sure that
all created object eventually made its way there. (It wouldn't matter
even if they did, as we are leaking most of our SBStructuredData
objects.)
Since StructuredDataImpl is just a collection of two (shared) pointers,
there's really no point in elaborate lifetime management, so this patch
replaces all StructuredDataImpl pointers with actual objects or
unique_ptrs to it. This makes it much easier to resolve SBStructuredData
leaks in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D114791
This patch introduces a new method to SBData: SetDataWithOwnership.
Instead of referencing the pointer to the data, this method copies the
data buffer into lldb's heap memory.
This can prevent having the underlying DataExtractor object point to
freed/garbage-collected memory.
Differential Revision: https://reviews.llvm.org/D115652
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The change to ArchSpec::SetArchitecture that was setting the
ObjectFile of a mach-o binary to llvm::Triple::MachO. It's not
necessary for my patch, and it changes the output of image list -t
causing TestUniversal.py to fail on x86_64 systems. The bots
turned up the failure, I was developing and testing this on
an Apple Silicon mac.
With arm64e ARMv8.3 pointer authentication, lldb needs to know how
many bits are used for addressing and how many are used for pointer
auth signing. This should be determined dynamically from the inferior
system / corefile, but there are some workflows where it still isn't
recorded and we fall back on a default value that is correct on some
Darwin environments.
This patch also explicitly sets the vendor of mach-o binaries to
Apple, so we select an Apple ABI instead of a random other ABI.
It adds a function pointer formatter for systems where pointer
authentication is in use, and we can strip the ptrauth bits off
of the function pointer address and get a different value that
points to an actual symbol.
Differential Revision: https://reviews.llvm.org/D115431
rdar://84644661
This is a post-review update for D115313, to rephrase source display
warning messages for artificial locations, making them more
understandable for the end-user.
Differential Revision: https://reviews.llvm.org/D115461
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
It can happen that a line entry reports that some source code is located
at line 0. In DWARF, line 0 is a special location which indicates that
code has no 1-1 mapping with source.
When stopping in one of those artificial locations, lldb doesn't know which
line to display and shows the beginning of the file instead.
This patch mitigates this behaviour by checking if the current symbol context
of the line entry has a matching function, in which case, it slides the
source listing to the start of that function.
This patch also shows the user a warning explaining why lldb couldn't
show sources at that location.
rdar://83118425
Differential Revision: https://reviews.llvm.org/D115313
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Because of its dependency on clang (and potentially other compilers
downstream, such as swift) lldb_private::GetVersion already lives in its
own library called lldbBase. Despite that, its implementation was spread
across unrelated files. This patch improves things by introducing a
Version library with its own directory, header and implementation file.
The benefits of this patch include:
- We can get rid of the ugly quoting macros.
- Other parts of LLDB can read the version number from
lldb/Version/Version.inc.
- The implementation can be swapped out for tools like lldb-server than
don't need to depend on clang at all.
Differential revision: https://reviews.llvm.org/D115211
This can be unsigned long or unsigned long long depending on where it's
compiled. Use the ugly portable way.
PlatformWindows.cpp:397:63: warning: format specifies type 'unsigned long long' but the argument has type 'uint64_t' (aka 'unsigned long')
The test for this functionality was failing on the darwin bot, because
the entries came out in opposite order. While this does not impact
functionality, and the algorithm that produces it is technically
deterministic (the nondeterminism comes from the contents of the host
environment), it seems like it would be more user-friendly if the
entries came out in a more predictible order.
Therefore I am adding the sort call to the actual code instead of
relaxing test expectations.
Qemu normally forwards its (host) environment variables to the emulated
process. While this works fine for most variables, there are some (few, but
fairly important) variables where this is not possible. LD_LIBRARY_PATH
is the probably the most important of those -- we don't want the library
search path for the emulated libraries to interfere with the libraries
that the emulator itself needs.
For this reason, qemu provides a mechanism (QEMU_SET_ENV,
QEMU_UNSET_ENV) to set variables only for the emulated process. This
patch makes use of that functionality to pass any user-provided
variables to the emulated process. Since we're piggy-backing on the
normal lldb environment-handling mechanism, all the usual mechanism to
provide environment (target.env-vars setting, SBLaunchInfo, etc.) work
out-of-the-box, and the only thing we need to do is to properly
construct the qemu environment variables.
This patch also adds a new setting -- target-env-vars, which represents
environment variables which are added (on top of the host environment)
to the default launch environments of all (qemu) targets. The reason for
its existence is to enable the configuration (e.g., from a startup
script) of the default launch environment, before any target is created.
The idea is that this would contain the variables (like the
aforementioned LD_LIBRARY_PATH) common to all targets being debugged on
the given system. The user is, of course, free to customize the
environment for a particular target in the usual manner.
The reason I do not want to use/recommend the "global" version of the
target.env-vars setting for this purpose is that the setting would apply
to all targets, whereas the settings (their values) I have mentioned
would be specific to the given platform.
Differential Revision: https://reviews.llvm.org/D115246
Also add tests to check that we print the warning in the right
circumstances.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D114877
This is a split of D113724. Calling `TypeSystemClang::AddMethodToCXXRecordType`
to create function decls for class methods.
Differential Revision: https://reviews.llvm.org/D113930
DataEncoder was previously made to modify data within an existing buffer. As the code progressed, new clients started using DataEncoder to create binary data. In these cases the use of this class was possibly, but only if you knew exactly how large your buffer would be ahead of time. This patchs adds the ability for DataEncoder to own a buffer that can be dynamically resized as data is appended to the buffer.
Change in this patch:
- Allow a DataEncoder object to be created that owns a DataBufferHeap object that can dynamically grow as data is appended
- Add new methods that start with "Append" to append data to the buffer and grow it as needed
- Adds full testing of the API to assure modifications don't regress any functionality
- Has two constructors: one that uses caller owned data and one that creates an object with object owned data
- "Append" methods only work if the object owns it own data
- Removes the ability to specify a shared memory buffer as no one was using this functionality. This allows us to switch to a case where the object owns its own data in a DataBufferHeap that can be resized as data is added
"Put" methods work on both caller and object owned data.
"Append" methods work on only object owned data where we can grow the buffer. These methods will return false if called on a DataEncoder object that has caller owned data.
The main reason for these modifications is to be able to use the DateEncoder objects instead of llvm::gsym::FileWriter in https://reviews.llvm.org/D113789. This patch wants to add the ability to create symbol table caching to LLDB and the code needs to build binary caches and save them to disk.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D115073
This setting allows the user to pass additional arguments to the qemu instance.
While we may want to introduce dedicated settings for the most common qemu
arguments (-cpu, for one), having this setting allows us to avoid creating a
setting for every possible argument.
Differential Revision: https://reviews.llvm.org/D115151
This patch adds support for arm64(e) targets to ScriptedProcess, by
providing the `DynamicRegisterInfo` to the base `lldb.ScriptedThread` class.
This allows create and debugging ScriptedProcess on Apple Silicon
hardware as well as Apple mobile devices.
It also replace the C++ asserts on `ScriptedThread::GetDynamicRegisterInfo`
by some error logging, re-enables `TestScriptedProcess` for arm64
Darwin platforms and adds a new invalid Scripted Thread test.
rdar://85892451
Differential Revision: https://reviews.llvm.org/D114923
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
While profiling lldb (from swift/llvm-project), these timers were noticed to be short lived and high firing, and so they add noise more than value.
The data points I recorded are:
`FindTypes_Impl`: 49,646 calls, 812ns avg, 40.33ms total
`AppendSymbolIndexesWithName`: 36,229 calls, 913ns avg, 33.09ms total
`FindAllSymbolsWithNameAndType`: 36,229 calls, 1.93µs avg, 70.05ms total
`FindSymbolsWithNameAndType`: 23,263 calls, 3.09µs avg, 71.88ms total
Differential Revision: https://reviews.llvm.org/D115182
This adds extra tests for libstdcpp and libcxx list and forward_list formatters to check whether formatter behaves correctly when applied on pointer and reference values.
Reviewed By: wallace
Differential Revision: https://reviews.llvm.org/D115137
This adds the formatters for libstdcpp's deque as a python
implementation. It adds comprehensive tests for the two different
storage strategies deque uses. Besides that, this fixes a couple of bugs
in the libcxx implementation. Finally, both implementation run against
the same tests.
This is a minor improvement on top of Danil Stefaniuc's formatter.
Lldb uses a pty to read/write to the standard input and output of the
debugged process. For host processes this would be automatically set up
by Target::FinalizeFileActions. The Qemu platform is in a unique
position of not really being a host platform, but not being remote
either. It reports IsHost() = false, but it is sufficiently host-like
that we can use the usual pty mechanism.
This patch adds the necessary glue code to enable pty redirection. It
includes a small refactor of Target::FinalizeFileActions and
ProcessLaunchInfo::SetUpPtyRedirection to reduce the amount of
boilerplate that would need to be copied.
I will note that qemu is not able to separate output from the emulated
program from the output of the emulator itself, so the two will arrive
intertwined. Normally this should not be a problem since qemu should not
produce any output during regular operation, but some output can slip
through in case of errors. This situation should be pretty obvious (to a
human), and it is the best we can do anyway.
For testing purposes, and inspired by lldb-server tests, I have extended
the mock emulator with the ability "program" the behavior of the
"emulated" program via command-line arguments.
Differential Revision: https://reviews.llvm.org/D114796
Recognize FreeBSD vmcores (kernel core dumps) through OS ABI = 0xFF
+ ELF version = 0, and do not process them via the elf-core plugin.
While these files use ELF as a container format, they contain raw memory
dump rather than proper VM segments and therefore are not usable
to the elf-core plugin.
Differential Revision: https://reviews.llvm.org/D114967
This patch fixes:
lldb/source/Plugins/Platform/Windows/PlatformWindows.cpp:386:13:
error: comparison between NULL and non-pointer ('lldb::addr_t' (aka
'unsigned long') and NULL) [-Werror,-Wnull-arithmetic]
This implements `DoLoadImage` and `UnloadImage` in the Windows platform
plugin modelled after the POSIX platform plugin. This was previously
unimplemented and resulted in a difficult to decipher error without any
logging.
This implementation is intended to support enables the use of LLDB's
Swift REPL on Windows.
Paths which are added to the library search path are persistent and
applied to all subsequent loads. This can be adjusted in the future by
storing all the cookies and restoring the path prior to returning from
the helper. However, the dynamic path count makes this a bit more
challenging.
Reviewed By: @JDevlieghere
Differential Revision: https://reviews.llvm.org/D77287
When debugging a Simulator process on macOS (e.g. the iPhone simulator),
the process will have both a dyld, and a dyld_sim present. The dyld_sim
is an iOS Simulator binary. The dyld is a macOS binary. Both are
MH_DYLINKER filetypes. lldb needs to identify & set a breakpoint in
dyld, so it has to distinguish between these two.
Previously lldb was checking if the inferior target was x86 (indicating
macOS) and the OS of the MH_DYLINKER binary was iOS/watchOS/etc -- if
so, then this is dyld_sim and we should ignore it. Now with arm64
macOS systems, this check was invalid, and we would set our breakpoint
for new binaries being loaded in dyld_sim, causing binary loading to
be missed by lldb.
This patch uses the Target's ArchSpec triple environment, to see if
this process is a simulator process. If this is a Simulator process,
then we only recognize a MH_DYLINKER binary with OS type macOS as
being dyld.
This patch also removes some code that handled pre-2016 era debugservers
which didn't give us the OS type for each binary. This was only being
used on macOS, where we don't need to handle the presence of very old
debugservers.
Differential Revision: https://reviews.llvm.org/D115001
rdar://85907839
Symbol table parsing has evolved over the years and many plug-ins contained duplicate code in the ObjectFile::GetSymtab() that used to be pure virtual. With this change, the "Symbtab *ObjectFile::GetSymtab()" is no longer virtual and will end up calling a new "void ObjectFile::ParseSymtab(Symtab &symtab)" pure virtual function to actually do the parsing. This helps centralize the code for parsing the symbol table and allows the ObjectFile base class to do all of the common work, like taking the necessary locks and creating the symbol table object itself. Plug-ins now just need to parse when they are asked to parse as the ParseSymtab function will only get called once.
This is a retry of the original patch https://reviews.llvm.org/D113965 which was reverted. There was a deadlock in the Manual DWARF indexing code during symbol preloading where the module was asked on the main thread to preload its symbols, and this would in turn cause the DWARF manual indexing to use a thread pool to index all of the compile units, and if there were relocations on the debug information sections, these threads could ask the ObjectFile to load section contents, which could cause a call to ObjectFileELF::RelocateSection() which would ask for the symbol table from the module and it would deadlock. We can't lock the module in ObjectFile::GetSymtab(), so the solution I am using is to use a llvm::once_flag to create the symbol table object once and then lock the Symtab object. Since all APIs on the symbol table use this lock, this will prevent anyone from using the symbol table before it is parsed and finalized and will avoid the deadlock I mentioned. ObjectFileELF::GetSymtab() was never locking the module lock before and would put off creating the symbol table until somewhere inside ObjectFileELF::GetSymtab(). Now we create it one time inside of the ObjectFile::GetSymtab() and immediately lock it which should be safe enough. This avoids the deadlocks and still provides safety.
Differential Revision: https://reviews.llvm.org/D114288
This adds a new platform class, whose job is to enable running
(debugging) executables under qemu.
(For general information about qemu, I recommend reading the RFC thread
on lldb-dev
<https://lists.llvm.org/pipermail/lldb-dev/2021-October/017106.html>.)
This initial patch implements the necessary boilerplate as well as the
minimal amount of functionality needed to actually be able to do
something useful (which, in this case means debugging a fully statically
linked executable).
The knobs necessary to emulate dynamically linked programs, as well as
to control other aspects of qemu operation (the emulated cpu, for
instance) will be added in subsequent patches. Same goes for the ability
to automatically bind to the executables of the emulated architecture.
Currently only two settings are available:
- architecture: the architecture that we should emulate
- emulator-path: the path to the emulator
Even though this patch is relatively small, it doesn't lack subtleties
that are worth calling out explicitly:
- named sockets: qemu supports tcp and unix socket connections, both of
them in the "forward connect" mode (qemu listening, lldb connecting).
Forward TCP connections are impossible to realise in a race-free way.
This is the reason why I chose unix sockets as they have larger, more
structured names, which can guarantee that there are no collisions
between concurrent connection attempts.
- the above means that this code will not work on windows. I don't think
that's an issue since user mode qemu does not support windows anyway.
- Right now, I am leaving the code enabled for windows, but maybe it
would be better to disable it (otoh, disabling it means windows
developers can't check they don't break it)
- qemu-user also does not support macOS, so one could contemplate
disabling it there too. However, macOS does support named sockets, so
one can even run the (mock) qemu tests there, and I think it'd be a
shame to lose that.
Differential Revision: https://reviews.llvm.org/D114509