It's messy to pattern-match, and completely unnecessary: scalar indexes
work equally well.
See also discussion on D81620 and D82061.
Differential Revision: https://reviews.llvm.org/D82430
In most cases, this doesn't have much impact: the destructors just call
the base class destructor anyway. A few subclasses of ConstantExpr
actually store non-trivial data, though. Make sure we clean up
appropriately.
This is sort of ugly, but I don't see a good alternative given the
constraints.
Issue found by asan buildbots running the testcase for D80330.
Differential Revision: https://reviews.llvm.org/D82509
This is a followup on D78403.
I'm unsure about `getAtomicOpAlign` overloads that take `AtomicRMWInst` and `AtomicCmpXchgInst`, shouldn't `getAlign` provide the correct answer already?
Differential Revision: https://reviews.llvm.org/D81369
I noticed that for some benchmarks we spend quite a bit of time
inside AttributeList::hasAttrSomewhere(), mainly when checking
for the "returned" attribute. Most of the time the attribute will
not be present, in which case this function has to walk through
the whole attribute list and check for the attribute at each index.
This patch adds a cache of all "available somewhere" attributes
inside AttributeListImpl. This makes the structure 12 bytes larger,
but I don't think that's problematic, as attribute lists are uniqued.
Compile-time in terms of instructions retired improves by 0.4% on
average, but >1% for sqlite.
Differential Revision: https://reviews.llvm.org/D81867
When calling on-the-fly passes from the legacy pass manager, the modification
status is not reported, which is a problem in case we depend on an acutal
transformation pass, and not only analyse.
Update the Legacy PM API to optionally report the changed status, assert if a
change is detected but this change is lost.
Related to https://reviews.llvm.org/D80916
Differential Revision: https://reviews.llvm.org/D81236
Fixed an issue in DataLayout::getIntPtrType where we were assuming
the input type was always a fixed vector type, which isn't true.
Added a test that exposed the problem to:
Transforms/InstCombine/vector_gep1.ll
Differential Revision: https://reviews.llvm.org/D82294
This is cleaning up comments (mostly in the bitcode handling) about
removing some backward compatibility aspect in the 4.0 release.
Historically, "4.0" was used during the development of the 3.x
versions as "this future major breaking change version". At the time
the major number was used to indicate the compatibility. When we
reached 3.9 we decided to change the numbering, instead of going to
3.10 we went to 4.0 but after changing the meaning of the major
number to not mean anything anymore with respect to bitcode backward
compatibility.
The current policy
(https://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility)
indicates only now:
The current LLVM version supports loading any bitcode since version 3.0.
Differential Revision: https://reviews.llvm.org/D82514
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
This patch fixes a compiler crash that was hit when trying to simplify
the following code:
getelementptr [2 x i64], [2 x i64]* null, i64 0, <vscale x 2 x i64> zeroinitializer
For the case where we have a null pointer value like above, we just
need to ensure we don't assume the indices are always fixed width.
Differential Revision: https://reviews.llvm.org/D82183
This function is deceptive at best: it doesn't return what you'd expect.
If you have an arbitrary GlobalValue and you want to determine the
alignment of that pointer, Value::getPointerAlignment() returns the
correct value. If you want the actual declared alignment of a function
or variable, GlobalObject::getAlignment() returns that.
This patch switches all the users of GlobalValue::getAlignment to an
appropriate alternative.
Differential Revision: https://reviews.llvm.org/D80368
This has two advantages: one, it's simpler, and two, it doesn't require
heroic pattern matching with scalable vectors.
Also includes a small fix to DataLayout to allow the scalable vector
testcase to work correctly.
Differential Revision: https://reviews.llvm.org/D82061
Summary:
this reduces significantly the number of assumes generated without aftecting too much
the information that is preserved. this improves the compile-time cost
of enable-knowledge-retention significantly.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79650
This functionality is very similar to Function compatibility with
AnnotationWriter. This change allows us to use AnnotationWriter with
BasicBlock through BB.print() method.
Reviewed-By: apilipenko
Differntial Revision: https://reviews.llvm.org/D81321
This patch adjust the load/store matrix intrinsics, formerly known as
llvm.matrix.columnwise.load/store, to improve the naming and allow
passing of extra information (volatile).
The patch performs the following changes:
* Rename columnwise.load/store to column.major.load/store. This is more
expressive and also more in line with the naming in Clang.
* Changes the stride arguments from i32 to i64. The stride can be
larger than i32 and this makes things more uniform with the way
things are handled in Clang.
* A new boolean argument is added to indicate whether the load/store
is volatile. The lowering respects that when emitting vector
load/store instructions
* MatrixBuilder is updated to require both Alignment and IsVolatile
arguments, which are passed through to the generated intrinsic. The
alignment is set using the `align` attribute.
The changes are grouped together in a single patch, to have a single
commit that breaks the compatibility. We probably should be fine with
updating the intrinsics, as we did not yet officially support them in
the last stable release. If there are any concerns, we can add
auto-upgrade rules for the columnwise intrinsics though.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke, nicolasvasilache, rjmccall, ftynse
Reviewed By: anemet, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D81472
Summary:
Assume all usages of this function are explicitly fixed-width operations
and cast to FixedVectorType
Reviewers: efriedma, sdesmalen, c-rhodes, majnemer, dblaikie
Reviewed By: sdesmalen
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80262
Summary:
Fix invalid usages of getNumElements identified by test case
LLVM.Transforms/InstCombine::vscale_extractelement.ll.
changesLength: Since the length of the llvm::SmallVector shufflemask
is related to the minimum number of elements in a scalable vector, it is
fine to just get the Min field of the ElementCount
isIdentityWithExtract: Since it is not possible to express the mask
needed for this pattern for scalable vectors, we can just bail before
calling getNumElements()
Reviewers: efriedma, sdesmalen, fpetrogalli, gchatelet, yrouban, craig.topper
Reviewed By: sdesmalen
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81969
Summary:
Previously, GlobalAlias::copyAttributesFrom did not preserve ThreadLocalMode,
causing incorrect IR generation in IR linking flows. This patch pushes the code
responsible for copying this attribute from GlobalVariable::copyAttributesFrom
down to GlobalValue::copyAttributesFrom so that it is shared by GlobalAlias.
Fixes PR46297.
Reviewers: tejohnson, pcc, hans
Reviewed By: tejohnson, hans
Subscribers: hiraditya, ibookstein, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81605
Summary:
Attempts to call getNumElements on scalable vectors identified by test
LLVM.Other::scalable-vectors-core-ir.ll. Since these checks are all
attempting to find if two vectors are the same size, calling
getElementCount will only increase safety.
Reviewers: efriedma, aprantl, reames, kmclaughlin, sdesmalen
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81895
Summary:
this reduces significantly the number of assumes generated without aftecting too much
the information that is preserved. this improves the compile-time cost
of enable-knowledge-retention significantly.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79650
In preparation for a patch that will enforce new rules for the usage of
the strictfp attribute, this patch introduces auto-upgrade behavior that
will replace the strictfp attribute on callsites with nobuiltin if the
enclosing function declaration doesn't also have the strictfp attribute.
This auto-upgrade isn't being performed on .ll files because that would
prevent us from writing a test for the forthcoming verifier behavior.
Differential Revision: https://reviews.llvm.org/D70096
When checking for an enum function attribute, use hasFnAttribute()
rather than hasAttribute() at FunctionIndex, because it is
significantly faster (and more concise to boot).
Change BasicBlock::removePredecessor to optionally return a vector of
instructions which might be dead. Use this in ConstantFoldTerminator to
delete them if they are dead.
Reapply with a bug fix: don't drop the "!KeepOneInputPHIs" argument when
removePredecessor calls PHINode::removeIncomingValue.
Differential Revision: https://reviews.llvm.org/D80206
Change BasicBlock::removePredecessor to optionally return a vector of
instructions which might be dead. Use this in ConstantFoldTerminator to
delete them if they are dead.
Differential Revision: https://reviews.llvm.org/D80206
Summary:
This patch adds optional field into function summary,
implements asm and bitcode serialization. YAML
serialization is omitted and can be added later if
needed.
This patch includes this information into summary only
if module contains at least one sanitize_memtag function.
In a near future MTE is the user of the analysis.
Later if needed we can provede more direct control
on when information is included into summary.
Reviewers: eugenis
Subscribers: hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80908
Commit d77ae1552f ("[DebugInfo] Support to emit debugInfo
for extern variables") added support to emit debuginfo
for extern variables. Currently, only BPF target enables to
emit debuginfo for extern variables.
But if the extern variable has "void" type, the compilation will
fail.
-bash-4.4$ cat t.c
extern void bla;
void *test() {
void *x = &bla;
return x;
}
-bash-4.4$ clang -target bpf -g -O2 -S t.c
missing global variable type
!1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1,
isLocal: false, isDefinition: false)
...
fatal error: error in backend: Broken module found, compilation aborted!
PLEASE submit a bug report to https://bugs.llvm.org/ and include the crash backtrace,
preprocessed source, and associated run script.
Stack dump:
...
The IR requires a DIGlobalVariable must have a valid type and the
"void" type does not generate any type, hence the above fatal error.
Note that if the extern variable is defined as "const void", the
compilation will succeed.
-bash-4.4$ cat t.c
extern const void bla;
const void *test() {
const void *x = &bla;
return x;
}
-bash-4.4$ clang -target bpf -g -O2 -S t.c
-bash-4.4$ cat t.ll
...
!1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1,
type: !6, isLocal: false, isDefinition: false)
!6 = !DIDerivedType(tag: DW_TAG_const_type, baseType: null)
...
Since currently, "const void extern_var" is supported by the
debug info, it is natural that "void extern_var" should also
be supported. This patch disabled assertion of "void extern_var"
in IR verifier and add proper guarding when emiting potential
null debug info type to dwarf types.
Differential Revision: https://reviews.llvm.org/D81131
Replace getNumElements() with getElementCount() when asserting that
two types have the same element counts.
Differential Revision: https://reviews.llvm.org/D81371
Now that we have an operand based form for the GC arguments to a statepoint intrinsic, update RS4GC to use it and update tests to reflect. This is pretty straight forward. I nearly landed without review, but figured a second set of eyes didn't hurt.
Differential Revision: https://reviews.llvm.org/D81121
This patch fixes VPIntrinsic::canIgnoreVectorLength when used on a
VPIntrinsic with scalable vector types. Also includes new unittest cases
for the '<vscale x 1 x whatever>' and '%evl == vscale' corner cases.
Allow InvokeInst to have the second optional prof branch weight for
its unwind branch. InvokeInst is a terminator with two successors.
It might have its unwind branch taken many times. If so
the BranchProbabilityInfo unwind branch heuristic can be inaccurate.
This patch allows a higher accuracy calculated with both branch
weights set.
Changes:
- A new section about InvokeInst is added to
the BranchWeightMetadata page. It states the old information that
missed in the doc and adds new about the second branch weight.
- Verifier is changed to allow either 1 or 2 branch weights
for InvokeInst.
- A new test is written for BranchProbabilityInfo to demonstrate
the main improvement of the simple fix in calcMetadataWeights().
- Several new testcases are created for Inliner. Those check that
both weights are accounted for invoke instruction weight
calculation.
- PGOUseFunc::setBranchWeights() is fixed to be applicable to
InvokeInst.
Reviewers: davidxl, reames, xur, yamauchi
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80618
Remove the function Instruction::setProfWeight() and make
use of Instruction::copyMetadata(.., {LLVMContext::MD_prof}).
This is correct for all use cases of setProfWeight() as it
is applied to CallBase instructions only.
This change results in prof metadata copied intact even if
the source has "VP". The old pair of calls
extractProfTotalWeight() + setProfWeight() resulted in
setting branch_weights if the source had "VP" data.
Reviewers: yamauchi, davidxl
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80987
In an earlier patch I removed the need for
IITDescriptor::ScalableVecArgument, which involved changing
DecodeIITType to pull out the last IIT_Info from the list. However,
it turns out this is unsafe and causes ubsan failures. I've tried to
fix this a different way by simply passing the last IIT_Info as an
additional argument to DecodeIITType.
Differential Revision: https://reviews.llvm.org/D81057
We introduced the GCStatepointInst class and have migrated almost all users of Statepoint/ImmutableStatepoint to the new API. Given downstream consumers have had a week to migrate, remove code which is now dead.
As noted in a comment on D80937, all of these are specified as unsigned values, but the verifier code was using signed. Given the practical values involved, the different in range didn't matter, but we might as well clean it up.
Currently, gc.relocates are defined in terms of indices into the statepoint's operand list. Given the gc args are at the end of a variable length list of operands, this makes interpreting their indices by hand a tad challenging. We can simplify the statepoint sequence and improve readability quite a bit by pulling these new operands into their own named operand bundle.
This patch defines a new operand bundle tag "gc-live". The semantics of the bundle are the same as the existing gc arguments of a statepoint. This patch simply introduces the definition and codegen for the bundle, future patches will migrate RS4GC to emitting the new form.
Interestingly, with this done and the recent migration to using deopt and gc-transition bundles, we really don't have much left in the statepoint itself. It really looks like the existing ID and flags fields are redundant; we have (existing!) attributes for all of them. I think we'll be able to reduce the gc.statepoint signature to simply a wrapped call (e.g. actual target and actual arguments).
Differential Revision: https://reviews.llvm.org/D80937
Summary:
The working set size heuristics (ProfileSummaryInfo::hasHugeWorkingSetSize)
under the partial sample PGO may not be accurate because the profile is partial
and the number of hot profile counters in the ProfileSummary may not reflect the
actual working set size of the program being compiled.
To improve this, the (approximated) ratio of the the number of profile counters
of the program being compiled to the number of profile counters in the partial
sample profile is computed (which is called the partial profile ratio) and the
working set size of the profile is scaled by this ratio to reflect the working
set size of the program being compiled and used for the working set size
heuristics.
The partial profile ratio is approximated based on the number of the basic
blocks in the program and the NumCounts field in the ProfileSummary and computed
through the thin LTO indexing. This means that there is the limitation that the
scaled working set size is available to the thin LTO post link passes only.
Reviewers: davidxl
Subscribers: mgorny, eraman, hiraditya, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79831
Replace calls to getNumElements() with getElementCount() in order
to avoid warnings for scalable vectors. The warnings were discovered
by this existing test:
test/CodeGen/AArch64/sve-gep.ll
Differential revision: https://reviews.llvm.org/D80782
This is split off from D79100 and:
- adds a intrinsic description/definition for @llvm.get.active.lane.mask(), and
- describe its semantics in LangRef.
As described (in more detail) in its LangRef section, it is semantically
equivalent to an icmp with the vector induction variable and the back-edge
taken count, and generates a mask of active/inactive vector lanes.
It will have several use cases. First, it will be used by the
ExpandVectorPredication pass for the VP intrinsics, to expand VP intrinsics for
scalable vectors on targets that do not support the `%evl` parameter, see
D78203.
Also, this is part of, and essential for our ARM MVE tail-predication story:
- this intrinsic will be emitted by the LoopVectorizer in D79100, when
the scalar epilogue is tail-folded into the vector body. This new intrinsic
will generate the predicate for the masked loads/stores, and it takes the
back-edge taken count as an argument. The back-edge taken count represents the
number of elements processed by the loop, which we need to setup MVE
tail-predication.
- Emitting the intrinsic is controlled by a new TTI hook, see D80597.
- We pick up this new intrinsic in an ARM MVETailPredication backend pass, see
D79175, and convert it to a MVE target specific intrinsic/instruction to
create a tail-predicated loop.
Differential Revision: https://reviews.llvm.org/D80596
I'd apparently only grepped in the lib directories and missed a few used in the Statepoint header itself. Beyond simple mechanical cleanup, changed the type of one routine to reflect the fact it also returns a statepoint.
00940fb854 changed this code to
construct a set for the B metadata. However, it still performs a
linear is_contained query, rather than making use of the set
structure.
Summary:
Count the per-module number of basic blocks when the module summary is computed
and sum them up during Thin LTO indexing.
This is used to estimate the working set size under the partial sample PGO.
This is split off of D79831.
Reviewers: davidxl, espindola
Subscribers: emaste, inglorion, hiraditya, MaskRay, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80403
Continues from D80598.
The key point of the change is to default to using operand bundles instead of the inline length prefix argument lists for statepoint nodes. An important subtlety to note is that the presence of a bundle has semantic meaning, even if it is empty. As such, we need to make a somewhat deeper change to the interface than is first obvious.
Existing code treats statepoint deopt arguments and the deopt bundle operands differently during inlining. The former is ignored (resulting in caller state being dropped), the later is merged.
We can't preserve the old behaviour for calls with deopt fed to RS4GC and then inlining, but we can avoid the no-deopt case changing. At least in internal testing, that seem to be the important one. (I'd argue the "stop merging after RS4GC" behaviour for the former was always "unexpected", but that the behaviour for non-deopt calls actually make sense.)
Differential Revision: https://reviews.llvm.org/D80674
This patch upgrades DISubrange to support fortran requirements.
Summary:
Below are the updates/addition of fields.
lowerBound - Now accepts signed integer or DIVariable or DIExpression,
earlier it accepted only signed integer.
upperBound - This field is now added and accepts signed interger or
DIVariable or DIExpression.
stride - This field is now added and accepts signed interger or
DIVariable or DIExpression.
This is required to describe bounds of array which are known at runtime.
Testing:
unit test cases added (hand-written)
check clang
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D80197
Now that all of the statepoint related routines have classes with isa support, let's cleanup.
I'm leaving the (dead) utitilities in tree for a few days so that I can do the same cleanup downstream without breakage.
Back when we had CallSite, we implemented the current Statepoint/ImmutableStatepoint structure in analogous manner. Now that CallSite has been removed, the structure used for statepoints looks decidely out of place. gc.statepoint is one of the small handful of intrinsics which are invokable. Because of this, it can't subclass IntrinsicInst as is idiomatic.
This change simply introduces the GCStatepointInst class, restructures the existing Statepoint/ImmutableStatepoint types to wrap it. I will be landing a series of changes to sink functionality into GCStatepointInst and updating callers to be more idiomatic.
- This allow us to specify the (minimal) alignment on an intrinsic's
arguments and, more importantly, the return value.
Differential Revision: https://reviews.llvm.org/D80422
In the current statepoint design, we have four distinct groups of operands to the call: call args, gc transition args, deopt args, and gc args. This format prexisted the support in IR for operand bundles and was in fact one of the inspirations for the extension. However, we never went back and rearchitected statepoints to fully leverage bundles.
This change is the first in a small sequence to do so. All this does is extend the SelectionDAG lowering code to allow deopt and gc transition operands to be specified in either inline argument bundles or operand bundles.
Differential Revision: https://reviews.llvm.org/D8059
Summary:
preallocated and musttail can work together, but we don't want to call
@llvm.call.preallocated.setup() to modify the stack in musttail calls.
So we shouldn't have the "preallocated" operand bundle when a
preallocated call is musttail.
Also disallow use of preallocated on calls without preallocated.
Codegen not yet implemented.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80581
-fno-semantic-interposition is currently the CC1 default. (The opposite
disables some interprocedural optimizations.) However, it does not infer
dso_local: on most targets accesses to ExternalLinkage functions/variables
defined in the current module still need PLT/GOT.
This patch makes explicit -fno-semantic-interposition infer dso_local,
so that PLT/GOT can be eliminated if targets implement local aliases
for AsmPrinter::getSymbolPreferLocal (currently only x86).
Currently we check whether the module flag "SemanticInterposition" is 0.
If yes, infer dso_local. In the future, we can infer dso_local unless
"SemanticInterposition" is 1: frontends other than clang will also
benefit from the optimization if they don't bother setting the flag.
(There will be risks if they do want ELF interposition: they need to set
"SemanticInterposition" to 1.)
If the caller needs to reponsible for making sure the MaybeAlign
has a value, then we should just make the caller convert it to an Align
with operator*.
I explicitly deleted the relational comparison operators that
were being inherited from Optional. It's unclear what the meaning
of two MaybeAligns were one is defined and the other isn't
should be. So make the caller reponsible for defining the behavior.
I left the ==/!= operators from Optional. But now that exposed a
weird quirk that ==/!= between Align and MaybeAlign required the
MaybeAlign to be defined. But now we use the operator== from
Optional that takes an Optional and the Value.
Differential Revision: https://reviews.llvm.org/D80455
Summary:
Replace any extant metadata uses of a dying instruction with undef to
preserve debug info accuracy. Some alternatives include:
- Treat Instruction like any other Value, and point its extant metadata
uses to an empty ValueAsMetadata node. This makes extant dbg.value uses
trivially dead (i.e. fair game for deletion in many passes), leading to
stale dbg.values being in effect for too long.
- Call salvageDebugInfoOrMarkUndef. Not needed to make instruction removal
correct. OTOH results in wasted work in some common cases (e.g. when all
instructions in a BasicBlock are deleted).
This came up while discussing some basic cases in
https://reviews.llvm.org/D80052.
Reviewers: jmorse, TWeaver, aprantl, dexonsmith, jdoerfert
Subscribers: jholewinski, qcolombet, hiraditya, jfb, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80264
Summary:
Module::setProfileSummary currently calls addModuelFlag. This prevents from
updating the ProfileSummary metadata in the module and results in a second
ProfileSummary added instead of replacing an existing one. I don't think this is
the expected behavior. It prevents updating the ProfileSummary and it does not
make sense to have more than one. To address this, add Module::setModuleFlag and
use it from setProfileSummary.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79902
Summary:
PartialProfileRatio approximately represents the ratio of the number of profile
counters of the program being built to the number of profile counters in the
partial sample profile. It is used to scale the working set size under the
partial sample profile to reflect the size of the program being built and to
improve the working set size heuristics.
This is a split from D79831.
Reviewers: davidxl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79951
I have refactored the code so that we no longer need the
ScalableVecArgument descriptor - the scalable property of vectors is
now encoded using the ElementCount class in IITDescriptor. This means
that when matching intrinsics we know precisely how to match the
arguments and return values.
Differential Revision: https://reviews.llvm.org/D80107
If we don't know anything about the alignment of a pointer, Align(1) is
still correct: all pointers are at least 1-byte aligned.
Included in this patch is a bugfix for an issue discovered during this
cleanup: pointers with "dereferenceable" attributes/metadata were
assumed to be aligned according to the type of the pointer. This
wasn't intentional, as far as I can tell, so Loads.cpp was fixed to
stop making this assumption. Frontends may need to be updated. I
updated clang's handling of C++ references, and added a release note for
this.
Differential Revision: https://reviews.llvm.org/D80072
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
Summary:
Rename 'i' to 'I'.
Factor out the optional field handling to getOptionalVal().
Split out of D79951.
Reviewers: davidxl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80230
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
This is the second attempt at landing this patch, after fixing the
KeepOneInputPHIs behaviour to also keep zero input PHIs.
Differential Revision: https://reviews.llvm.org/D80141
r119493 protected against PHINode::hasConstantValue returning the PHI
node itself, but a later fix in r159687 means that can never happen, so
the workarounds are no longer required.
Summary:
Currently they are not supported together. Supporting them will require
a LangRef change. See discussion in https://reviews.llvm.org/D77689.
Reviewers: rnk, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80132
r2694 fixed a bug where removePredecessor could create IR with a use not
dominated by its def in a self loop. But this could only happen in an
unreachable loop, and since that time the rules have been relaxed so
that defs don't have to dominate uses in unreachable code, so the fix is
unnecessary. The regression test added in r2691 still stands.
Differential Revision: https://reviews.llvm.org/D80128
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
Remove Use::setPrev. It provided no value because it had the same
accessibility as the underlying field Prev, and there was no
corresponding setNext anyway.
Simplify Use::removeFromList.
Summary:
The BFloat IR type is introduced to provide support for, initially, the BFloat16
datatype introduced with the Armv8.6 architecture (optional from Armv8.2
onwards). It has an 8-bit exponent and a 7-bit mantissa and behaves like an IEEE
754 floating point IR type.
This is part of a patch series upstreaming Armv8.6 features. Subsequent patches
will upstream intrinsics support and C-lang support for BFloat.
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, sdesmalen, deadalnix, ctetreau
Subscribers: hiraditya, llvm-commits, danielkiss, arphaman, kristof.beyls, dexonsmith
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78190
I have changed the ScalableVecArgument case in matchIntrinsicType
to create a new FixedVectorType. This means that the next case we
hit (Vector) will not assert when calling getNumElements(), since
we know that it's always a FixedVectorType. This is a temporary
measure for now, and it will be fixed properly in another patch
that refactors this code.
The changes are covered by this existing test:
CodeGen/AArch64/sve-intrinsics-fp-converts.ll
In addition, I have added a new test to ensure that we correctly
reject SVE intrinsics when called with fixed length vector types.
Differential Revision: https://reviews.llvm.org/D79416
This patch adds support for DWARF attribute DW_AT_data_location.
Summary:
Dynamic arrays in fortran are described by array descriptor and
data allocation address. Former is mapped to DW_AT_location and
later is mapped to DW_AT_data_location.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79592
llvm rejects DWARF operator DW_OP_push_object_address.This DWARF
operator is needed for Flang to support allocatable array.
Summary:
Currently llvm rejects DWARF operator DW_OP_push_object_address.
below error is produced when llvm finds this operator.
[..]
invalid expression
!DIExpression(151)
warning: ignoring invalid debug info in pushobj.ll
[..]
There are some parts missing in support of this operator, need to
be completed.
Testing
-added a unit testcase
-check-debuginfo
-check-llvm
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79306
The fact that loads and stores can have the alignment missing is a
constant source of confusion: code that usually works can break down in
rare cases. So fix the LoadInst API so the alignment is never missing.
To reduce the number of changes required to make this work, IRBuilder
and certain LoadInst constructors will grab the module's datalayout and
compute the alignment automatically. This is the same alignment
instcombine would eventually apply anyway; we're just doing it earlier.
There's a minor risk that the way we're retrieving the datalayout
could break out-of-tree code, but I don't think that's likely.
This is the last in a series of patches, so most of the necessary
changes have already been merged.
Differential Revision: https://reviews.llvm.org/D77454
This patch extends DIModule Debug metadata in LLVM to support
Fortran modules. DIModule is extended to contain File and Line
fields, these fields will be used by Flang FE to create debug
information necessary for representing Fortran modules at IR level.
Furthermore DW_TAG_module is also extended to contain these fields.
If these fields are missing, debuggers like GDB won't be able to
show Fortran modules information correctly.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79484
We want to add a way to avoid merging identical calls so as to keep the
separate debug-information for those calls. There is also an asan
usecase where having this attribute would be beneficial to avoid
alternative work-arounds.
Here is the link to the feature request:
https://bugs.llvm.org/show_bug.cgi?id=42783.
`nomerge` is different from `noline`. `noinline` prevents function from
inlining at callsites, but `nomerge` prevents multiple identical calls
from being merged into one.
This patch adds `nomerge` to disable the optimization in IR level. A
followup patch will be needed to let backend understands `nomerge` and
avoid tail merge at backend.
Reviewed By: asbirlea, rnk
Differential Revision: https://reviews.llvm.org/D78659
don't span their entire scope.
The previous commit (6d1c40c171) is an older version of the test.
Reviewed By: aprantl, vsk
Differential Revision: https://reviews.llvm.org/D79573
When calculating the natural alignment for scalable vectors it
is acceptable to calculate an allocation size based on the minimum
number of elements in the vector.
This code path is exercised by an existing test:
CodeGen/AArch64/sve-intrinsics-int-arith.ll
Differential Revision: https://reviews.llvm.org/D79475
Summary: Add -detailed-summary support for sample profile dump to match that of instrumentation profile.
Reviewers: wmi, davidxl, hoyFB
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79291
Summary:
Constrain which metadata nodes are allowed to be, or contain,
DILocations. This ensures that logic for updating DILocations in a
Module is complete.
Currently, !llvm.loop metadata is the only odd duck which contains
nested DILocations. This has caused problems in the past: some passes
forgot to visit the nested locations, leading to subtly broken debug
info and late verification failures.
If there's a compelling reason for some future metadata to nest
DILocations, we'll need to introduce a generic API for updating the
locations attached to an Instruction before relaxing this check.
Reviewers: aprantl, dsanders
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79245
Summary:
Remove invalid usage of VectorType::getNumElements in
ShuffleVectorInst::isValidOperands identified by test case
llvm::Analysis/ConstantFolding/vscale-shufflevector.ll. The tested
conditions hold for both fixed width and scalable vectors; use
getElementCount().
Reviewers: efriedma, sdesmalen, c-rhodes, spatel
Reviewed By: sdesmalen
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79212
Summary:
Have stripNonLineTableDebugInfo() attach updated !llvm.loop metadata to
an instruction (instead of updating and then discarding the metadata).
This fixes "!dbg attachment points at wrong subprogram for function"
errors seen while archiving an iOS app.
It would be nice -- as a follow-up -- to catch this issue earlier,
perhaps by modifying the verifier to constrain where DILocations are
allowed. Any alternative suggestions appreciated.
rdar://61982466
Reviewers: aprantl, dsanders
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79200
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Add llvm.call.preallocated.{setup,arg} instrinsics.
Add "preallocated" operand bundle which takes a token produced by llvm.call.preallocated.setup.
Add "preallocated" parameter attribute, which is like byval but without the copy.
Verifier changes for these IR constructs.
See https://github.com/rnk/llvm-project/blob/call-setup-docs/llvm/docs/CallSetup.md
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74651
Profile and profile summary are usually read only once and then annotated
on IR. The profile summary metadata on IR should include the value of the
newly added partial profile flag, so that compilation phase like thinlto
postlink can get the full set of profile information.
Differential Revision: https://reviews.llvm.org/D78310
This means AttrBuilder will always create a sorted set of attributes and
we can skip the sorting step. Sorting attributes is surprisingly
expensive, and I recently made it worse by making it use array_pod_sort.
Attributes are currently stored as a simple list. Enum attributes
additionally use a bitset to allow quickly determining whether an
attribute is set. String attributes on the other hand require a
full scan of the list. As functions tend to have a lot of string
attributes (at least when clang is used), this is a noticeable
performance issue.
This patch adds an additional name => attribute map to the
AttributeSetNode, which allows querying string attributes quickly.
This results in a 3% reduction in instructions retired on CTMark.
Changes to memory usage seem to be in the noise (attribute sets are
uniqued, and we don't tend to have more than a few dozen or hundred
unique attribute sets, so adding an extra map does not have a
noticeable cost.)
Differential Revision: https://reviews.llvm.org/D78859
The CallSite and ImmutableCallSite were removed in a previous
commit. So rename the file to match the remaining class and
the name of the cpp that implements it.
Summary:
- Whether or not a vector is scalable is a function of its type. Since
all instances of ScalableVectorType will have true for this value and
all instances of FixedVectorType will have false for this value, there
is no need to store it as a class member.
Reviewers: efriedma, fpetrogalli, kmclaughlin
Reviewed By: fpetrogalli
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78601
Summary:
Piggy-back off of TypeSize's STRICT_FIXED_SIZE_VECTORS flag and:
- if it is defined, assert that the vector is not scalable
- if it is not defined, complain if the vector is scalable
Reviewers: efriedma, sdesmalen, c-rhodes
Reviewed By: sdesmalen
Subscribers: hiraditya, mgorny, tschuett, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78576
Summary:
* VectorType::getBitWidth() is just an unsafe version of
getPrimitiveSizeInBits() that assumes all vectors are fixed width.
Reviewers: efriedma, sdesmalen, huntergr, craig.topper
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77833
CallSite will likely be removed soon, but AbstractCallSite serves a different purpose and won't be going away.
This patch switches it to internally store a CallBase* instead of a
CallSite. The only interface changes are the removal of the getCallSite
method and getCallBackUses now takes a CallBase&. These methods had only
a few callers that were easy enough to update without needing a
compatibility shim.
In the future once the other CallSites are gone, the CallSite.h
header should be renamed to AbstractCallSite.h
Differential Revision: https://reviews.llvm.org/D78322
Remove unused BasicBlock forward declaration from Pass.h and Attributes/BasicBlock includes from Pass.cpp
Add BasicBlock forward declaration to UnifyFunctionExitNodes.h which was relying on Pass.h
The current strategy LICM uses when sinking for debuginfo is
that of picking the debug location of one of the uses.
This causes stepping to be wrong sometimes, see, e.g. PR45523.
This patch introduces a generalization of getMergedLocation(),
that operates on a vector of locations instead of two, and try
to merge all them together, and use the new API in LICM.
<rdar://problem/61750950>
Summary:
AbstractCallSite::getCallbackUses() does not check that callback callee index from
the callback metadata does not exceed the total number of call arguments. This patch
add such validation check.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78112
It can be used to avoid passing the begin and end of a range.
This makes the code shorter and it is consistent with another
wrappers we already have.
Differential revision: https://reviews.llvm.org/D78016
Summary:
StringPool has many caveats and isn't used in the monorepo. I will
propose removing it as a patch separate from this refactoring patch.
Reviewers: rriddle
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77976
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77276
When constrained floating point is enabled the AArch64-specific builtins don't use constrained intrinsics in some cases. Fix that.
Neon is part of this patch, so ARM is affected as well.
Differential Revision: https://reviews.llvm.org/D77074
This replaces the ChildrenGetter inside the DominatorTree with
GraphTraits over a GraphDiff object, an object which encapsulated the
view of the previous CFG.
This also simplifies the extentions in clang which use DominatorTree, as
GraphDiff also filters nullptrs.
Re-land a90374988e after moving CFGDiff.h
to Support.
Differential Revision: https://reviews.llvm.org/D77341
This reverts commit a90374988e and 5da1671bf8.
A new dependency is introduced here from Support to IR which seems like
a layering violation. It also breaks the MLIR build at the moment.
Summary:
This replaces the ChildrenGetter inside the DominatorTree with
GraphTraits over a GraphDiff object, an object which encapsulated the
view of the previous CFG.
This also simplifies the extentions in clang which use DominatorTree, as
GraphDiff also filters nullptrs.
Reviewers: kuhar, dblaikie, NutshellySima
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77341
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
Thanks to Bill Wendling (void) for the report and steps to reproduce. It looks
like this was missed during r350508's cleanup of the CallSite split into
CallBase, CallInst, and CallBrInst.
This was exposed by running pgo on a callbr, which was creating a ptrtoint to
the inline asm thinking it was an indirect call. The relevant callchain looks
like:
IndirectCallPromotionPlugin::run()
-> PGOIndirectCallVisitor::findIndirectCalls()
-> PGOIndirectCallVisitor::visitCallBase()
-> CallBase::isIndirectCall()
Reviewers: void, chandlerc
Reviewed By: void
Subscribers: hiraditya, llvm-commits, craig.topper, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77600
Summary:
24 March 2020: LLVM 10.0.0 is out.
I gathered all deprecated function introduced between 9 and 10 and cleaned them up so they will be removed from 11.
> git log -p -S LLVM_ATTRIBUTE_DEPRECATED llvmorg-9.0.0..llvmorg-10.0.0
Reviewers: courbet
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77409
Since D73835 we no longer need to define the whole IRBuilder
implementation in the header. This patch moves some of the larger
methods out of line, into the C++ file.
Differential Revision: https://reviews.llvm.org/D77332
Summary:
Splitting Knowledge retention into Queries in Analysis and Builder into Transform/Utils
allows Queries and Transform/Utils to use Analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77171
If we have a must-tail call the callee and caller need to have matching
ABIs. Part of that is alignment which we might modify when we deduce
alignment of arguments of either. Since we would need to keep them in
sync, which is not as simple, we simply avoid deducing alignment for
arguments of the must-tail caller or callee.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D76673
Currently ConstantRange::binaryAnd/binaryOr results are too pessimistic
for single element constant ranges.
If both operands are single element ranges, we can use APInt's AND and
OR implementations directly.
Note that some other binary operations on constant ranges can cover the
single element cases naturally, but for OR and AND this unfortunately is
not the case.
Reviewers: nikic, spatel, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D76446
This patch adds checks to the verifier to ensure the dimension arguments
passed to the matrix intrinsics match the vector types for their
arugments/return values.
Reviewers: anemet, Gerolf, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D77129
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
Summary: this patch preserve information from various places in EarlyCSE into assume bundles.
Reviewers: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76769
Optimize the common case of splat vector constant. For large vector
going through all elements is expensive. For splatr/broadcast cases we
can skip going through all elements.
Differential Revision: https://reviews.llvm.org/D76664
This change implements constant folding to constrained versions of
intrinsics, implementing rounding: floor, ceil, trunc, round, rint and
nearbyint.
Differential Revision: https://reviews.llvm.org/D72930
Summary:
It is safe to assume that the TypeSize associated to scalar types has
a fixed size.
This avoids an implicit cast of TypeSize to integer inside
`Type::getScalarSizeInBits()`, as such implicit cast is deprecated.
Reviewers: efriedma, sdesmalen
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76892
Previously, we would ignore alloca alignment when building the frame
and just use the natural alignment of the allocated type. If an alloca
is over-aligned for its IR type, this could lead to a frame entry with
inadequate alignment for the downstream uses of the alloca.
Since highly-aligned fields also tend to produce poor layouts under a
naive layout algorithm, I've also switched coroutine frames to use the
new optimal struct layout algorithm.
In order to communicate the frame size and alignment to later passes,
I needed to set align+dereferenceable attributes on the frame-pointer
parameter of the resume function. This is clearly the right thing to
do, but the align attribute currently seems to result in assumptions
being added during inlining that the optimizer cannot easily remove.
Summary:
Rename `succ_const_iterator` to `const_succ_iterator` and
`succ_const_range` to `const_succ_range` for consistency with the
predecessor iterators, and the corresponding iterators in
MachineBasicBlock.
Reviewers: nicholas, dblaikie, nlewycky
Subscribers: hiraditya, bmahjour, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75952
This patch integrates operand bundle llvm.assumes [0] with the
Attributor. Most IRAttributes will now look at uses of the associated
value and if there are llvm.assume operand bundle uses with the right
tag we will check if they are in the must-be-executed-context (around
the context instruction). Droppable users, which is currently only
llvm::assume, are handled special in some places now as well.
[0] http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D74888
These intrinsics take a v4i32/v4f32 input and are supposed to
broadcast elements 0 and 1. Instead the autoupgrade code was
broadcasting elements 0, 1, 2, and 3.
I could fix the autoupgrade, but since its been broken for years
it seemed better just to steer anyone still trying to use it away
completely.
The initial implementation just delegates to APInt's implementation of
XOR for single element ranges and conservatively returns the full set
otherwise.
Reviewers: nikic, spatel, lebedev.ri
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D76453
The existence of the class is more confusing than helpful, I think; the
commonality is mostly just "GEP is legal", which can be queried using
APIs on GetElementPtrInst.
Differential Revision: https://reviews.llvm.org/D75660
This is fixing up various places that use the implicit
TypeSize->uint64_t conversion.
The new overloads in MemoryLocation.h are already used in various places
that construct a MemoryLocation from a TypeSize, including MemorySSA.
(They were using the implicit conversion before.)
Differential Revision: https://reviews.llvm.org/D76249
When compiling
```
struct S {
float w;
};
void f(long w, long b);
void g(struct S s) {
int w = s.w;
f(w, w*4);
}
```
I get Assertion failed: ((!CombinedExpr || CombinedExpr->isValid()) && "Combined debug expression is invalid").
That's because we combine two epxressions that both end in DW_OP_stack_value:
```
(lldb) p Expr->dump()
!DIExpression(DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value)
(lldb) p Param.Expr->dump()
!DIExpression(DW_OP_constu, 4, DW_OP_mul, DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value)
(lldb) p CombinedExpr->isValid()
(bool) $0 = false
(lldb) p CombinedExpr->dump()
!DIExpression(4097, 32, 5, 4097, 64, 5, 16, 4, 30, 4097, 32, 5, 4097, 64, 5, 159, 159)
```
I believe that in this particular case combining two stack values is
safe, but I didn't want to sink the special handling into
DIExpression::append() because I do want everyone to think about what
they are doing.
Patch by Adrian Prantl.
Fixes PR45181.
rdar://problem/60383095
Differential Revision: https://reviews.llvm.org/D76164
Summary: Prevent InstCombine from removing llvm.assume for which the arguement is true when they have operand bundles with usefull information.
Reviewers: jdoerfert, nikic, lebedev.ri
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76147
According to LangRef for unordered atomic memory transfer intrinsics
"The first three arguments are the same as they are in the @llvm.memcpy intrinsic, with the added constraint that
len is required to be a positive integer multiple of the element_size. If len is not a positive integer multiple
of element_size, then the behaviour of the intrinsic is undefined."
So the len is not multiple of element size is just an undefined behavior and verifier should not complain about that
as undefined behavior is allowed in LLVM IR.
This change removes the verifier check for this condition
Reviewers: reames
Reviewed By: reames
Subscribers: dantrushin, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D76116
Summary:
This patch will filter attributes to only preserve those that are usefull.
In the case of NoAlias it is filtered out not because it isn't usefull
but because it is incorrect to preserve it as it is only valdi for the
duration of the function.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75828
Summary:
during inling Create and insert an llvm.assume with attributes to preserve them.
to prevent any changes for now generation of llvm.assume is under a flag disabled by default.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75825
LLVM currently supports CSK_MD5 and CSK_SHA1 source file checksums in
debug info. This change adds support for CSK_SHA256 checksums.
The SHA256 checksums are supported by the CodeView debug format.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D75785