back of it.
I don't have anything even remotely close to a test case for this. It
only broke two build bots, both of them doing bootstrap builds, one of
them a dragonegg bootstrap. It doesn't break for me when I bootstrap
either. It doesn't reproduce every time or on many machines during the
bootstrap. Many thanks to Duncan Sands who got the exact command (and
stage of the bootstrap) which failed on the dragonegg bootstrap and
managed to get it to trigger under valgrind with debug symbols. The fix
was then found by inspection.
llvm-svn: 159993
multiple scalars and insert them into a vector. Next, we shuffle the elements
into the correct places, as before.
Also fix a small dagcombine bug in SimplifyBinOpWithSameOpcodeHands, when the
migration of bitcasts happened too late in the SelectionDAG process.
llvm-svn: 159991
quadratic behavior when performing pathological merges. Fixes the core
element of PR12652.
There is only one user of addRangeFrom left: join. I'm hoping to
refactor further in a future patch and have join use this merge
operation as well.
llvm-svn: 159982
of the trick merge routines. This adds a layer of testing that was
necessary when implementing more efficient (and complex) merge logic for
this datastructure.
No functionality changed here.
llvm-svn: 159981
subtarget CPU descriptions and support new features of
MachineScheduler.
MachineModel has three categories of data:
1) Basic properties for coarse grained instruction cost model.
2) Scheduler Read/Write resources for simple per-opcode and operand cost model (TBD).
3) Instruction itineraties for detailed per-cycle reservation tables.
These will all live side-by-side. Any subtarget can use any
combination of them. Instruction itineraries will not change in the
near term. In the long run, I expect them to only be relevant for
in-order VLIW machines that have complex contraints and require a
precise scheduling/bundling model. Once itineraries are only actively
used by VLIW-ish targets, they could be replaced by something more
appropriate for those targets.
This tablegen backend rewrite sets things up for introducing
MachineModel type #2: per opcode/operand cost model.
llvm-svn: 159891
DwarfDebug class could generate the same (inlined) DIVariable twice:
1) when trying to find abstract debug variable for a concrete inlined instance.
2) when explicitly collecting info for variables that were optimized out.
This change makes sure that this duplication won't happen and makes
Clang pass "gdb.opt/inline-locals" test from gdb testsuite.
Reviewed by Eric Christopher.
llvm-svn: 159811
hash_value overload for MachineOperands. This addresses a FIXME
sufficient for me to remove it, and cleans up the code nicely too.
The important changes to the hashing logic:
- TargetFlags are now included in all of the hashes. These were complete
missed.
- Register operands have their subregisters and whether they are a def
included in the hash.
- We now actually hash all of the operand types. Previously, many
operand types were simply *dropped on the floor*. For example:
- Floating point immediates
- Large integer immediates (>64-bit)
- External globals!
- Register masks
- Metadata operands
- It removes the offset from the block-address hash; I'm a bit
suspicious of this, but isIdenticalTo doesn't consider the offset for
black addresses.
Any patterns involving these entities could have triggered extreme
slowdowns in MachineCSE or PHIElimination. Let me know if there are PRs
you think might be closed now... I'm looking myself, but I may miss
them.
llvm-svn: 159743
broken. This patch fixes the superficial problems which lead to the
intractably slow compile times reported in PR13225.
The specific issue is that we were failing to include the *offset* of
a global variable in the hash code. Oops. This would in turn cause all
MIs which were only distinguishable due to operating on different
offsets of a global variable to produce identical hash functions. In
some of the test cases attached to the PR I saw hash table activity
where there were O(1000) probes-per-lookup *on average*. A very few
entries were responsible for most of these probes.
There is still quite a bit more to do here. The ad-hoc layering of data
in MachineOperands makes them *extremely* brittle to hash correctly.
We're missing quite a few other cases, the only ones I've fixed here are
the specific MO types which were allowed through the assert() in
getOffset().
llvm-svn: 159741
change.
Move the "Not profitable, avoid CSE!" debug message next to where we fail the
check for profitability and use a different message for avoiding CSE due to
being in different register classes.
llvm-svn: 159729
Also allow trailing register mask operands on non-variadic both
MachineSDNodes and MachineInstrs.
The extra physreg RegisterSDNode operands are added to the MI as
<imp-use> operands. This makes it possible to have non-variadic call
instructions.
Call and return instructions really are non-variadic, the argument
registers should only be used implicitly - they are not part of the
encoding.
llvm-svn: 159727
IntegersSubsetMapping
- Replaced type of Items field from std::list with std::map. In neares future I'll test it with DenseMap and do the correspond replacement
if possible.
llvm-svn: 159703
This pass performs if-conversion on SSA form machine code by
speculatively executing both sides of the branch and using a cmov
instruction to select the result. This can help lower the number of
branch mispredictions on architectures like x86 that don't have
predicable instructions.
The current implementation is very aggressive, and causes regressions on
mosts tests. It needs good heuristics that have yet to be implemented.
llvm-svn: 159694
IntegersSubsetMapping
- Replaced type of Items field from std::list with std::map. In neares future I'll test it with DenseMap and do the correspond replacement
if possible.
llvm-svn: 159659
It appears to have caught a use-after-free introduced as by r159567
and/or friends which call 'addPass' from many more places. The bug in
'addPass' doesn't appear to be new, and was spotted by inspection when
ASan shown a bright light of a stacktrace at these functions.
Hopefully this will fix the ASan failure -- I have no test case other
than running an ASan-built clang over the test suite.
llvm-svn: 159614
This is still a work in progress but I believe it is currently good enough
to fix PR13122 "Need unit test driver for codegen IR passes". For example,
you can run llc with -stop-after=loop-reduce to have it dump out the IR after
running LSR. Serializing machine-level IR is not yet supported but we have
some patches in progress for that.
The plan is to serialize the IR to a YAML file, containing separate sections
for the LLVM IR, machine-level IR, and whatever other info is needed. Chad
suggested that we stash the stop-after pass in the YAML file and use that
instead of the start-after option to figure out where to restart the
compilation. I think that's a great idea, but since it's not implemented yet
I put the -start-after option into this patch for testing purposes.
llvm-svn: 159570
This is a preliminary step toward having TargetPassConfig be able to
start and stop the compilation at specified passes for unit testing
and debugging. No functionality change.
llvm-svn: 159567
implicit_def, the other instruction can be anything, including instructions
that define multiple values. Be careful about that and don't assume what operand
0 is.
Fixes pr13249.
llvm-svn: 159509
This was always part of the VMCore library out of necessity -- it deals
entirely in the IR. The .cpp file in fact was already part of the VMCore
library. This is just a mechanical move.
I've tried to go through and re-apply the coding standard's preferred
header sort, but at 40-ish files, I may have gotten some wrong. Please
let me know if so.
I'll be committing the corresponding updates to Clang and Polly, and
Duncan has DragonEgg.
Thanks to Bill and Eric for giving the green light for this bit of cleanup.
llvm-svn: 159421
The TargetInstrInfo::getNumMicroOps API does not change, but soon it
will be used by MachineScheduler. Now each subtarget can specify the
number of micro-ops per itinerary class. For ARM, this is currently
always dynamic (-1), because it is used for load/store multiple which
depends on the number of register operands.
Zero is now a valid number of micro-ops. This can be used for
nop pseudo-instructions or instructions that the hardware can squash
during dispatch.
llvm-svn: 159406
Teach vector legalization how to honor Promote for int to float
conversions. The code checking whether to promote the operation knew
to look at the operand, but the actual promotion code didn't. This
fixes that. The operand is promoted up via [zs]ext.
rdar://11762659
llvm-svn: 159378
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
llvm-svn: 159312
Such passes can be used to tweak the register assignments in a
target-dependent way, for example to avoid write-after-write
dependencies.
llvm-svn: 159209
The primary advantage is that loop optimizations will be applied in a
stable order. This helps debugging and unit test creation. It is also
a better overall implementation without pathologically bad performance
on deep functions.
On large functions (llvm-stress --size=200000 | opt -loops)
Before: 0.1263s
After: 0.0225s
On deep functions (after tweaking llvm-stress, thanks Nadav):
Before: 0.2281s
After: 0.0227s
See r158790 for more comments.
The loop tree is now consistently generated in forward order, but loop
passes are applied in reverse order over the program. If we have a
loop optimization that prefers forward order, that can easily be
achieved by adding a different type of LoopPassManager.
llvm-svn: 159183
Verify that all paths from the entry block to a virtual register read
pass through a def. Enable this check even when MRI->isSSA() is false.
Verify that the live range of a virtual register is live out of all
predecessor blocks, even for PHI-values.
This requires that PHIElimination sometimes inserts IMPLICIT_DEF
instruction in predecessor blocks.
llvm-svn: 159150
Implicitly defined virtual registers can simply have the <undef> bit set
on all uses, and copies can be turned into implicit defs recursively.
Physical registers are a bit trickier. We handle the common case where a
physreg def is used by a nearby instruction in the same basic block. For
more complicated cases, just leave the IMPLICIT_DEF instruction in.
llvm-svn: 159149
When a PHI use is <undef>, don't emit a copy in the predecessor block,
but insert an IMPLICIT_DEF instruction instead. This ensures that
virtual register uses are always jointly dominated by defs, even if some
of them are IMPLICIT_DEF.
llvm-svn: 159121
When the source register to a 2-addr instruction is undefined, there is
no need to attempt any transformations - simply replace the source
register with the destination register.
This also comes up when lowering IMPLICIT_DEF instructions - make sure
the <undef> flag is moved to the new partial register def operand:
%vreg8<def> = INSERT_SUBREG %vreg9<undef>, %vreg0<kill>, sub_16bit
rewrite undef:
%vreg8<def> = INSERT_SUBREG %vreg8<undef>, %vreg0<kill>, sub_16bit
convert to:
%vreg8:sub_16bit<def,read-undef> = COPY %vreg0<kill>
llvm-svn: 159120
It's simple: Don't treat <undef> operands as uses, and don't assume a
virtual register has a defining instruction unless a real use has been
seen.
llvm-svn: 159061
Original commit message:
Allow up to 64 functional units per processor itinerary.
This patch changes the type used to hold the FU bitset from unsigned to uint64_t.
This will be needed for some upcoming PowerPC itineraries.
llvm-svn: 159027
With regunit liveness permanently enabled, this function would always
return true.
Also remove now obsolete code for checking physreg interference.
llvm-svn: 159006
boolean flag to an enum: { Fast, Standard, Strict } (default = Standard).
This option controls the creation by optimizations of fused FP ops that store
intermediate results in higher precision than IEEE allows (E.g. FMAs). The
behavior of this option is intended to match the behaviour specified by a
soon-to-be-introduced frontend flag: '-ffuse-fp-ops'.
Fast mode - allows formation of fused FP ops whenever they're profitable.
Standard mode - allow fusion only for 'blessed' FP ops. At present the only
blessed op is the fmuladd intrinsic. In the future more blessed ops may be
added.
Strict mode - allow fusion only if/when it can be proven that the excess
precision won't effect the result.
Note: This option only controls formation of fused ops by the optimizers. Fused
operations that are explicitly requested (e.g. FMA via the llvm.fma.* intrinsic)
will always be honored, regardless of the value of this option.
Internally TargetOptions::AllowExcessFPPrecision has been replaced by
TargetOptions::AllowFPOpFusion.
llvm-svn: 158956
to be generic across architectures. It has the
following description in the gnu sources:
Negate the immediate constant
Several Architectures such as x86 have local implementations
of operand modifier 'n' which go beyond the above description
slightly. This won't affect them.
Affected files:
lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
Added 'n' to the switch cases.
test/CodeGen/Generic/asm-large-immediate.ll
Generic compiled test (x86 for me)
test/CodeGen/Mips/asm-large-immediate.ll
Mips compiled version of the generic one
Contributer: Jack Carter
llvm-svn: 158939
to be generic across architectures. It has the
following description in the gnu sources:
Substitute immediate value without immediate syntax
Several Architectures such as x86 have local implementations
of operand modifier 'c' which go beyond the above description
slightly. To make use of the generic modifiers without overriding
local implementation one can make a call to the base class method
for AsmPrinter::PrintAsmOperand() in the locally derived method's
"default" case in the switch statement. That way if it is already
defined locally the generic version will never get called.
This change is needed when test/CodeGen/generic/asm-large-immediate.ll
failed on a native Mips board. The test was assuming a generic
implementation was in place.
Affected files:
lib/Target/Mips/MipsAsmPrinter.cpp:
Changed the default case to call the base method.
lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
Added 'c' to the switch cases.
test/CodeGen/Mips/asm-large-immediate.ll
Mips compiled version of the generic one
Contributer: Jack Carter
llvm-svn: 158925
_umodsi3 libcalls if they have the same arguments. This optimization
was apparently broken if one of the node was replaced in place.
rdar://11714607
llvm-svn: 158900
Stop depending on the LiveIntervalUnions in RegAllocBase, they are about
to be removed.
The changes are mostly replacing register alias iterators with regunit
iterators, and querying LiveRegMatrix instrad of RegAllocBase.
InterferenceCache is converted to work with per-regunit
LiveIntervalUnions, and it checks fixed regunit interference separately,
using the fixed live intervals provided by LiveIntervalAnalysis.
The local splitting helper calcGapWeights() is also considering fixed
regunit interference which is kept on the side now.
llvm-svn: 158867
That is a DenseMap iterator keyed by pointers, so the iteration order is
nondeterministic.
I would like to replace the DenseMap with an IndexedMap which doesn't
allow iteration.
llvm-svn: 158856
Regunit live ranges are computed on demand, so when mi-sched calls
handleMove, some regunits may not have live ranges yet.
That makes updating them easier: Just skip the non-existing ranges. They
will be computed correctly from the rescheduled machine code when they
are needed.
llvm-svn: 158831
I'll admit I'm not entirely satisfied with this change, but it seemed
the cleanest option. Other suggestions quite welcome
The issue is that the traits specializations have static methods which
return the typedef'ed PHI_iterator type. In both the IR and MI layers
this is typedef'ed to a custom iterator class defined in an anonymous
namespace giving the types and the functions returning them internal
linkage. However, because the traits specialization is defined in the
'llvm' namespace (where it has to be, specialized template lives there),
and is in turn used in the templated implementation of the SSAUpdater.
This led to the linkage conflict that Clang now warns about.
The simplest solution to me was just to define the PHI_iterator as
a nested class inside the trait specialization. That way it still
doesn't get scoped widely, it can't be accidentally reused somewhere,
etc. This is a little gross just because nested class definitions are
a little gross, but the alternatives seem more ad-hoc.
llvm-svn: 158799
-stable-loops enables a new algorithm for generating the Loop
forest. It differs from the original algorithm in a few respects:
- Not determined by use-list order.
- Initially guarantees RPO order of block and subloops.
- Linear in the number of CFG edges.
- Nonrecursive.
I didn't want to change the LoopInfo API yet, so the block lists are
still inclusive. This seems strange to me, and it means that building
LoopInfo is not strictly linear, but it may not be a problem in
practice. At least the block lists start out in RPO order now. In the
future we may add an attribute or wrapper analysis that allows other
passes to assume RPO order.
The primary motivation of this work was not to optimize LoopInfo, but
to allow reproducing performance issues by decomposing the compilation
stages. I'm often unable to do this with the current LoopInfo, because
the loop tree order determines Loop pass order. Serializing the IR
tends to invert the order, which reverses the optimization order. This
makes it nearly impossible to debug interdependent loop optimizations
such as LSR.
I also believe this will provide more stable performance results across time.
llvm-svn: 158790
The implementation only needs inclusion from LoopInfo.cpp and
MachineLoopInfo.cpp. Clients of the interface should only include the
interface. This makes the interface readable and speeds up rebuilds
after modifying the implementation.
llvm-svn: 158787
When LiveIntervals is tracking fixed interference in regunits, make sure
to update those intervals as well. Currently guarded by -live-regunits.
llvm-svn: 158766
ensureAlignment() in MachineFunction). Also, drop setMaxAlignment() in
favor of this new function. This creates a main entry point to setting
MaxAlignment, which will be helpful for future work. No functionality
change intended.
llvm-svn: 158758
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
llvm-svn: 158757
The PPC::EXTSW instruction preserves the low 32 bits of its input, just
like some of the x86 instructions. Use it to reduce register pressure
when the low 32 bits have multiple uses.
This requires a small change to PeepholeOptimizer since EXTSW takes a
64-bit input register.
This is related to PR5997.
llvm-svn: 158743
TargetLoweringObjectFileELF. Use this to support it on X86. Unlike ARM,
on X86 it is not easy to find out if .init_array should be used or not, so
the decision is made via TargetOptions and defaults to off.
Add a command line option to llc that enables it.
llvm-svn: 158692
This patch changes the type used to hold the FU bitset from unsigned to uint64_t.
This will be needed for some upcoming PowerPC itineraries.
llvm-svn: 158679
For store->load dependencies that may alias, we should always use
TrueMemOrderLatency, which may eventually become a subtarget hook. In
effect, we should guarantee at least TrueMemOrderLatency on at least
one DAG path from a store to a may-alias load.
This should fix the standard mode as well as -enable-aa-sched-mi".
llvm-svn: 158380
The LiveRegMatrix represents the live range of assigned virtual
registers in a Live interval union per register unit. This is not
fundamentally different from the interference tracking in RegAllocBase
that both RABasic and RAGreedy use.
The important differences are:
- LiveRegMatrix tracks interference per register unit instead of per
physical register. This makes interference checks cheaper and
assignments slightly more expensive. For example, the ARM D7 reigster
has 24 aliases, so we would check 24 physregs before assigning to one.
With unit-based interference, we check 2 units before assigning to 2
units.
- LiveRegMatrix caches regmask interference checks. That is currently
duplicated functionality in RABasic and RAGreedy.
- LiveRegMatrix is a pass which makes it possible to insert
target-dependent passes between register allocation and rewriting.
Such passes could tweak the register assignments with interference
checking support from LiveRegMatrix.
Eventually, RABasic and RAGreedy will be switched to LiveRegMatrix.
llvm-svn: 158255
This deduplicates some code from the optimizing register allocators, and
it means that it is now possible to change the register allocators'
solutions simply by editing the VirtRegMap between the register
allocator pass and the rewriter.
llvm-svn: 158249
OK, not really. We don't want to reintroduce the old rewriter hacks.
This patch extracts virtual register rewriting as a separate pass that
runs after the register allocator. This is possible now that
CodeGen/Passes.cpp can configure the full optimizing register allocator
pipeline.
The rewriter pass uses register assignments in VirtRegMap to rewrite
virtual registers to physical registers, and it inserts kill flags based
on live intervals.
These finalization steps are the same for the optimizing register
allocators: RABasic, RAGreedy, and PBQP.
llvm-svn: 158244
Bulk move of TargetInstrInfo implementation into
TargetInstrInfoImpl. This is dirty because the code isn't part of
TargetInstrInfoImpl class, nor should it be, because the methods are
not target hooks. However, it's the current mechanism for keeping
libTarget useful outside the backend. You'll get a not-so-nice link
error if you invoke a TargetInstrInfo method that depends on CodeGen.
The TargetInstrInfoImpl class should probably be removed since it
doesn't really solve this problem.
To really fix this, we probably need separate interfaces for the
CodeGen/nonCodeGen sides of TargetInstrInfo.
llvm-svn: 158212
The commit is intended to fix rdar://11540023.
It is implemented as part of peephole optimization. We can actually implement
this in the SelectionDAG lowering phase.
llvm-svn: 158122
Bundles should be treated as one atomic transaction when checking
liveness. That is how the register allocator (and VLIW targets) treats
bundles.
llvm-svn: 158116
LLVM is now -Wunused-private-field clean except for
- lib/MC/MCDisassembler/Disassembler.h. Not sure why it keeps all those unaccessible fields.
- gtest.
llvm-svn: 158096
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
llvm-svn: 158090
Soon we'll be making LiveIntervalUnions for register units as well.
This was the only place using the RepReg member, so just remove it.
llvm-svn: 158038
Don't print out the register number and spill weight, making the TRI
argument unnecessary.
This allows callers to interpret the reg field. It can currently be a
virtual register, a physical register, a spill slot, or a register unit.
llvm-svn: 158031
Instead of computing a live interval per physreg, LiveIntervals can
compute live intervals per register unit. This makes impossible the
confusing situation where aliasing registers could have overlapping live
intervals. It should also make fixed interferernce checking cheaper
since registers have fewer register units than aliases.
Live intervals for regunits are computed on demand, using MRI use-def
chains and the new LiveRangeCalc class. Only regunits live in to ABI
blocks are precomputed during LiveIntervals::runOnMachineFunction().
The regunit liveness computations don't depend on LiveVariables.
llvm-svn: 158029
expression (a * b + c) that can be implemented as a fused multiply-add (fma)
if the target determines that this will be more efficient. This intrinsic
will be used to implement FP_CONTRACT support and an aggressive FMA formation
mode.
If your target has a fast FMA instruction you should override the
isFMAFasterThanMulAndAdd method in TargetLowering to return true.
llvm-svn: 158014
This allows a subtarget to explicitly specify the issue width and
other properties without providing pipeline stage details for every
instruction.
llvm-svn: 157979
valid itinerary but no pipeline stages.
An itinerary can contain useful scheduling information without specifying pipeline stages for each instruction.
llvm-svn: 157977
It is an old function that does a lot more than required by
CalcSpillWeights, which was the only remaining caller.
The isRematerializable() function never actually sets the isLoad
argument, so don't try to compute that.
llvm-svn: 157973
IntegersSubsetGeneric, IntegersSubsetMapping: added IntTy template parameter, that allows use either APInt or IntItem. This change allows to write unittest for these classes.
llvm-svn: 157880
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
llvm-svn: 157854
IntegersSubset devided into IntegersSubsetGeneric and into IntegersSubset itself. The first has no references to ConstantInt and works with IntItem only.
IntegersSubsetMapping also made generic. Here added second template parameter "IntegersSubsetTy" that allows to use on of two IntegersSubset types described below.
llvm-svn: 157815
types, as well as int<->ptr casts. This allows us to tailcall functions
with some trivial casts between the call and return (i.e. because the
return types disagree).
llvm-svn: 157798
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 157755
It helps compile exotic inline asm. In the test case, normal GR32
virtual registers use up eax-edx so the final GR32_ABCD live range has
no registers left. Since all the live ranges were tiny, we had no way of
prioritizing the smaller register class.
This patch allows tiny unspillable live ranges to be evicted by tiny
unspillable live ranges from a smaller register class.
<rdar://problem/11542429>
llvm-svn: 157715
Besides adding the new insertPass function, this patch uses it to
enhance the existing -print-machineinstrs so that the MachineInstrs
after a specific pass can be printed.
Patch by Bin Zeng!
llvm-svn: 157655
ranges for the instruction about to be bundled. This fixes a bug in an external
project where an assertion was triggered due to spurious 'multiple defs' within
the bundle.
Patch by Ivan Llopard. Thanks Ivan!
llvm-svn: 157632
Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now?
1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst.
2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case.
3. IntItem can be easyly easily replaced with APInt.
4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes.
Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code
ConstantInt *V = ...;
if (V->getValue().ugt(AnotherV->getValue()) {
...
}
will look awful. Much more better this way:
IntItem V = ConstantIntVal->getValue();
if (AnotherV < V) {
}
Of course any reviews are welcome.
P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks).
Since in future these classes will founded on APInt, it will possible to use them in more generic ways.
llvm-svn: 157576
definition in the map before calling itself to retrieve the
DIE for the declaration. Without this change, if this causes
getOrCreateSubprogramDIE to be recursively called on the definition,
it will create multiple DIEs for that definition. Fixes PR12831.
llvm-svn: 157541
SimplifyCFG tends to form a lot of 2-3 case switches when merging branches. Move
the most likely condition to the front so it is checked first and the others can
be skipped. This is currently not as effective as it could be because SimplifyCFG
destroys profiling metadata when merging branches and switches. Merging branch
weight metadata is tricky though.
This code touches at most 3 cases so I didn't use a proper sorting algorithm.
llvm-svn: 157521
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
The Hazard checker implements in-order contraints, or interlocked
resources. Ready instructions with hazards do not enter the available
queue and are not visible to other heuristics.
The major code change is the addition of SchedBoundary to encapsulate
the state at the top or bottom of the schedule, including both a
pending and available queue.
The scheduler now counts cycles in sync with the hazard checker. These
are minimum cycle counts based on known hazards.
Targets with no itinerary (x86_64) currently remain at cycle 0. To fix
this, we need to provide some maximum issue width for all targets. We
also need to add the concept of expected latency vs. minimum latency.
llvm-svn: 157427
Live ranges with a constrained register class may benefit from splitting
around individual uses. It allows the remaining live range to use a
larger register class where it may allocate. This is like spilling to a
different register class.
This is only attempted on constrained register classes.
<rdar://problem/11438902>
llvm-svn: 157354
Now that the coalescer keeps live intervals and machine code in sync at
all times, it needs to deal with identity copies differently.
When merging two virtual registers, all identity copies are removed
right away. This means that other identity copies must come from
somewhere else, and they are going to have a value number.
Deal with such copies by merging the value numbers before erasing the
copy instruction. Otherwise, we leave dangling value numbers in the live
interval.
This fixes PR12927.
llvm-svn: 157340
This helps compile time when the greedy register allocator splits live
ranges in giant functions. Without the bias, we would try to grow
regions through the giant edge bundles, usually to find out that the
region became too big and expensive.
If a live range has many uses in blocks near the giant bundle, the small
negative bias doesn't make a big difference, and we still consider
regions including the giant edge bundle.
Giant edge bundles are usually connected to landing pads or indirect
branches.
llvm-svn: 157174
With physreg joining out of the way, it is easy to recognize the
instructions that need their kill flags cleared while testing for
interference.
This allows us to skip the final scan of all instructions for an 11%
speedup of the coalescer pass.
llvm-svn: 157169
may be RAUW'd by the recursive call to LegalizeOps; instead, retrieve
the other operands when calling UpdateNodeOperands. Fixes PR12889.
llvm-svn: 157162
Dead code elimination during coalescing could cause a virtual register
to be split into connected components. The following rewriting would be
confused about the already joined copies present in the code, but
without a corresponding value number in the live range.
Erase all joined copies instantly when joining intervals such that the
MI and LiveInterval representations are always in sync.
llvm-svn: 157135
Dead code and joined copies are now eliminated on the fly, and there is
no need for a post pass.
This makes the coalescer work like other modern register allocator
passes: Code is changed on the fly, there is no pending list of changes
to be committed.
llvm-svn: 157132
The late dead code elimination is no longer necessary.
The test changes are cause by a register hint that can be either %rdi or
%rax. The choice depends on the use list order, which this patch changes.
llvm-svn: 157131
Before rewriting uses of one value in A to register B, check that there
are no tied uses. That would require multiple A values to be rewritten.
This bug can't bite in the current version of the code for a fairly
subtle reason: A tied use would have caused 2-addr to insert a copy
before the use. If the copy has been coalesced, it will be found by the
same loop changed by this patch, and the optimization is aborted.
This was exposed by 400.perlbench and lua after applying a patch that
deletes joined copies aggressively.
llvm-svn: 157130
Remaining virtreg->physreg copies were rematerialized during
updateRegDefsUses(), but we already do the same thing in joinCopy() when
visiting the physreg copy instruction.
Eliminate the preserveSrcInt argument to reMaterializeTrivialDef(). It
is now always true.
llvm-svn: 157103
Dead copies cause problems because they are trivial to coalesce, but
removing them gived the live range a dangling end point. This patch
enables full dead code elimination which trims live ranges to their uses
so end points don't dangle.
DCE may erase multiple instructions. Put the pointers in an ErasedInstrs
set so we never risk visiting erased instructions in the work list.
There isn't supposed to be any dead copies entering RegisterCoalescer,
but they do slip by as evidenced by test/CodeGen/X86/coalescer-dce.ll.
llvm-svn: 157101