It never does anything when running 'make check', and it get's in the
way of updating live intervals in 2-addr.
The hook was originally added to help form IT blocks in Thumb2 code
before register allocation, but the pass ordering has changed since
then, and we run if-conversion after register allocation now.
When the MI scheduler is enabled, there will be no less than two
schedulers between 2-addr and Thumb2ITBlockPass, so this hook is
unlikely to help anything.
llvm-svn: 161794
It is still possible to if-convert if the tail block has extra
predecessors, but the tail phis must be rewritten instead of being
removed.
llvm-svn: 161781
Detect when there is not enough available ILP, so if-conversion can't
speculate instructions for free.
Compute the lengthening of the critical path when inserting a select
instruction that depends on the condition as well as both sides of the
if.
Reject conversions that would stretch the critical path by more than
half a mispredict penalty.
llvm-svn: 161713
Trace::getResourceLength() computes the number of cycles required to
execute the trace when ignoring data dependencies. The number can be
compared to the critical path to estimate the trace ILP.
Trace::getPHIDepth() computes the data dependency depth of a PHI in a
trace successor that isn't necessarily part of the trace.
llvm-svn: 161711
When a trace ends with a back-edge, include PHIs in the loop header in
the height computations. This makes the critical path through a loop
more accurate by including the latencies of the last instructions in the
loop.
llvm-svn: 161688
When replacing Old with New, it can happen that New is already a
successor. Add the old and new edge weights instead of creating a
duplicate edge.
llvm-svn: 161653
This makes it possible to speed up def_iterator by stopping at the first
use. This makes def_empty() and getUniqueVRegDef() much faster when
there are many uses.
In a +Asserts build, LiveVariables is 100x faster in one case because
getVRegDef() has an assertion that would scan to the end of a
def_iterator chain.
Spill weight calculation is significantly faster (300x in one case)
because isTriviallyReMaterializable() calls MRI->isConstantPhysReg(%RIP)
which calls def_empty(%RIP).
llvm-svn: 161634
Use a more conventional doubly linked list where the Prev pointers form
a cycle. This means it is no longer necessary to adjust the Prev
pointers when reallocating the VRegInfo array.
The test changes are required because the register allocation hint is
using the use-list order to break ties.
llvm-svn: 161633
Register MachineOperands are kept in linked lists accessible via MRI's
reg_iterator interfaces. The linked list management was handled partly
by MachineOperand methods, partly by MRI methods.
Move all of the list management into MRI, delete
MO::AddRegOperandToRegInfo() and MO::RemoveRegOperandFromRegInfo().
Be more explicit about handling the cases where an MRI pointer isn't
available.
llvm-svn: 161632
We filter out MachineLoop back-edges during the trace-building PO
traversals, but it is possible to have CFG cycles that aren't natural
loops, and MachineLoopInfo doesn't include such cycles.
Use a standard visited set to detect such CFG cycles, and completely
ignore them when picking traces.
llvm-svn: 161532
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
llvm-svn: 161462
The getSumForBlock function was quadratic in the number of successors
because getSuccWeight would perform a linear search for an already known
iterator.
llvm-svn: 161460
This adds support for TargetIndex operands during isel. The meaning of
these (index, offset, flags) operands is entirely defined by the target.
llvm-svn: 161453
A target index operand looks a lot like a constant pool reference, but
it is completely target-defined. It contains the 8-bit TargetFlags, a
32-bit index, and a 64-bit offset. It is preserved by all code generator
passes.
TargetIndex operands can be used to carry target-specific information in
cases where immediate operands won't suffice.
llvm-svn: 161441
Compare the critical paths of the two traces through an if-conversion
candidate. If the difference is larger than the branch brediction
penalty, reject the if-conversion. If would never pay.
llvm-svn: 161433
Previously, MBP essentially aligned every branch target it could. This
bloats code quite a bit, especially non-looping code which has no real
reason to prefer aligned branch targets so heavily.
As Andy said in review, it's still a bit odd to do this without a real
cost model, but this at least has much more plausible heuristics.
Fixes PR13265.
llvm-svn: 161409
If the result of a common subexpression is used at all uses of the candidate
expression, CSE should not increase the live range of the common subexpression.
rdar://11393714 and rdar://11819721
llvm-svn: 161396
This patch is mostly just refactoring a bunch of copy-and-pasted code, but
it also adds a check that the call instructions are readnone or readonly.
That check was already present for sin, cos, sqrt, log2, and exp2 calls, but
it was missing for the rest of the builtins being handled in this code.
llvm-svn: 161282
This option runs LiveIntervals before TwoAddressInstructionPass which
will eventually learn to exploit and update the analysis.
Eventually, LiveIntervals will run before PHIElimination, and we can get
rid of LiveVariables.
llvm-svn: 161270
The previous change caused fast isel to not attempt handling any calls to
builtin functions. That included things like "printf" and caused some
noticable regressions in compile time. I wanted to avoid having fast isel
keep a separate list of functions that had to be kept in sync with what the
code in SelectionDAGBuilder.cpp was handling. I've resolved that here by
moving the list into TargetLibraryInfo. This is somewhat redundant in
SelectionDAGBuilder but it will ensure that we keep things consistent.
llvm-svn: 161263
I noticed that SelectionDAGBuilder::visitCall was missing a check for memcmp
in TargetLibraryInfo, so that it would use custom code for memcmp calls even
with -fno-builtin. I also had to add a new -disable-simplify-libcalls option
to llc so that I could write a test for this.
llvm-svn: 161262
The 'unused' state of a value number can be represented as an invalid
def SlotIndex. This also exposed code that shouldn't have been looking
at unused value VNInfos.
llvm-svn: 161258
The only real user of the flag was removeCopyByCommutingDef(), and it
has been switched to LiveIntervals::hasPHIKill().
All the code changed by this patch was only concerned with computing and
propagating the flag.
llvm-svn: 161255
The VNInfo::HAS_PHI_KILL is only half supported. We precompute it in
LiveIntervalAnalysis, but it isn't properly updated by live range
splitting and functions like shrinkToUses().
It is only used in one place: RegisterCoalescer::removeCopyByCommutingDef().
This patch changes that function to use a new LiveIntervals::hasPHIKill()
function that computes the flag for a given value number.
llvm-svn: 161254
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
llvm-svn: 161232
Add more comments and use early returns to reduce nesting in isLoadFoldable.
Also disable folding for V_SET0 to avoid introducing a const pool entry and
a const pool load.
rdar://10554090 and rdar://11873276
llvm-svn: 161207
Whenever both instruction depths and instruction heights are known in a
block, it is possible to compute the length of the critical path as
max(depth+height) over the instructions in the block.
The stored live-in lists make it possible to accurately compute the
length of a critical path that bypasses the current (small) block.
llvm-svn: 161197
LiveRangeEdit::eliminateDeadDefs() can delete a dead instruction that
reads unreserved physregs. This would leave the corresponding regunit
live interval dangling because we don't have shrinkToUses() for physical
registers.
Fix this problem by turning the instruction into a KILL instead of
deleting it. This happens in a landing pad in
test/CodeGen/X86/2012-05-19-CoalescerCrash.ll:
%vreg27<def,dead> = COPY %EDX<kill>; GR32:%vreg27
becomes:
KILL %EDX<kill>
An upcoming fix to the machine verifier will catch problems like this by
verifying regunit live intervals.
This fixes PR13498. I am not including the test case from the PR since
we already have one exposing the problem once the verifier is fixed.
llvm-svn: 161182
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
This patch is a rework of r160919 and was tested on clang self-host on my local
machine.
rdar://10554090 and rdar://11873276
llvm-svn: 161152
The height on an instruction is the minimum number of cycles from the
instruction is issued to the end of the trace. Heights are computed for
all instructions in and below the trace center block.
The method for computing heights is different from the depth
computation. As we visit instructions in the trace bottom-up, heights of
used instructions are pushed upwards. This way, we avoid scanning long
use lists, looking for uses in the current trace.
At each basic block boundary, a list of live-in registers and their
minimum heights is saved in the trace block info. These live-in lists
are used when restarting depth computations on a trace that
converges with an already computed trace. They will also be used to
accurately compute the critical path length.
llvm-svn: 161138
Assuming infinite issue width, compute the earliest each instruction in
the trace can issue, when considering the latency of data dependencies.
The issue cycle is record as a 'depth' from the beginning of the trace.
This is half the computation required to find the length of the critical
path through the trace. Heights are next.
llvm-svn: 161074
One motivating example is to sink an instruction from a basic block which has
two successors: one outside the loop, the other inside the loop. We should try
to sink the instruction outside the loop.
rdar://11980766
llvm-svn: 161062
We are extending live ranges, so kill flags are not accurate. They
aren't needed until they are recomputed after RA anyway.
<rdar://problem/11950722>
llvm-svn: 161023
We branch to the successor with higher edge weight first.
Convert from
je LBB4_8 --> to outer loop
jmp LBB4_14 --> to inner loop
to
jne LBB4_14
jmp LBB4_8
PR12750
rdar: 11393714
llvm-svn: 161018
This lets traces include the final iteration of a nested loop above the
center block, and the first iteration of a nested loop below the center
block.
We still don't allow traces to contain backedges, and traces are
truncated where they would leave a loop, as seen from the center block.
llvm-svn: 161003
When computing a trace, all the candidates for pred/succ must have been
visited. Filter out back-edges first, though. The PO traversal ignores
them.
Thanks to Andy for spotting this in review.
llvm-svn: 160995
This is a cleaned up version of the isFree() function in
MachineTraceMetrics.cpp.
Transient instructions are very unlikely to produce any code in the
final output. Either because they get eliminated by RegisterCoalescing,
or because they are pseudo-instructions like labels and debug values.
llvm-svn: 160977
A->isPredecessor(B) is the same as B->isSuccessor(A), but it can
tolerate a B that is null or dangling. This shouldn't happen normally,
but it it useful for verification code.
llvm-svn: 160968
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
rdar://10554090 and rdar://11873276
llvm-svn: 160919
A value number is a PHI def if and only if it begins at a block
boundary. This can be derived from the def slot, a separate flag is not
necessary.
llvm-svn: 160893