With this patch, the only dependency left is from Utility
to Host. After this is broken, Utility will finally be
standalone.
Differential Revision: https://reviews.llvm.org/D29909
llvm-svn: 295088
Summary:
This patch adds accurate dependency specifications to the mail LLDB libraries and tools.
In all cases except lldb-server, these dependencies are added in addition to existing dependencies (making this low risk), and I performed some code cleanup along the way.
For lldb-server I've cleaned up the LLVM dependencies down to just the minimum actually required. This is more than lldb-server actually directly references, and I've left a todo in the code to clean that up.
Reviewers: labath, zturner
Subscribers: lldb-commits, danalbert, srhines, ki.stfu, mgorny, jgosnell
Differential Revision: https://reviews.llvm.org/D29333
llvm-svn: 293686
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
For Hexagon we want to be able to call functions during debugging, however currently lldb only supports this when there is JIT support.
Although emulation using IR interpretation is an alternative, it is currently limited in that it can't make function calls.
In this patch we have extended the IR interpreter so that it can execute a function call on the target using register manipulation.
To do this we need to handle the Call IR instruction, passing arguments to a new thread plan and collecting any return values to pass back into the IR interpreter.
The new thread plan is needed to call an alternative ABI interface of "ABI::PerpareTrivialCall()", allowing more detailed information about arguments and return values.
Reviewers: jingham, spyffe
Subscribers: emaste, lldb-commits, ted, ADodds, deepak2427
Differential Revision: http://reviews.llvm.org/D9404
llvm-svn: 242137
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
FileAction was previously a nested class in ProcessLaunchInfo.
This led to some unfortunate style consequences, such as requiring
the AddPosixSpawnFileAction() funciton to be defined in the Target
layer, instead of the more appropriate Host layer. This patch
makes FileAction its own independent class in the Target layer,
and then moves AddPosixSpawnFileAction() into Host as a result.
Differential Revision: http://reviews.llvm.org/D4877
llvm-svn: 215649
This change brings in lldb-gdbserver (llgs) specifically for Linux x86_64.
(More architectures coming soon).
Not every debugserver option is covered yet. Currently
the lldb-gdbserver command line can start unattached,
start attached to a pid (process-name attach not supported yet),
or accept lldb attaching and launching a process or connecting
by process id.
The history of this large change can be found here:
https://github.com/tfiala/lldb/tree/dev-tfiala-native-protocol-linux-x86_64
Until mid/late April, I was not sharing the work and continued
to rebase it off of head (developed via id tfiala@google.com). I switched over to
user todd.fiala@gmail.com in the middle, and once I went to github, I did
merges rather than rebasing so I could share with others.
llvm-svn: 212069
Elevate ProcessInfo and ProcessLaunchInfo into their own headers.
llgs will be using ProcessLaunchInfo but doesn't need to pull in
the rest of Process.h.
This also moves a bunch of implementation details from the header
declarations into ProcessInfo.cpp and ProcessLaunchInfo.cpp.
Tested on Ubuntu 14.04 Cmake and MacOSX Xcode.
Related to https://github.com/tfiala/lldb/issues/26.
llvm-svn: 212005
libdispatch aka Grand Central Dispatch (GCD) queues. Still fleshing out the
documentation and testing of these but the overall API is settling down so it's
a good time to check it in.
<rdar://problem/15600370>
llvm-svn: 197190
- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795